Metamath Proof Explorer


Theorem uc1pcl

Description: Unitic polynomials are polynomials. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses uc1pcl.p
|- P = ( Poly1 ` R )
uc1pcl.b
|- B = ( Base ` P )
uc1pcl.c
|- C = ( Unic1p ` R )
Assertion uc1pcl
|- ( F e. C -> F e. B )

Proof

Step Hyp Ref Expression
1 uc1pcl.p
 |-  P = ( Poly1 ` R )
2 uc1pcl.b
 |-  B = ( Base ` P )
3 uc1pcl.c
 |-  C = ( Unic1p ` R )
4 eqid
 |-  ( 0g ` P ) = ( 0g ` P )
5 eqid
 |-  ( deg1 ` R ) = ( deg1 ` R )
6 eqid
 |-  ( Unit ` R ) = ( Unit ` R )
7 1 2 4 5 3 6 isuc1p
 |-  ( F e. C <-> ( F e. B /\ F =/= ( 0g ` P ) /\ ( ( coe1 ` F ) ` ( ( deg1 ` R ) ` F ) ) e. ( Unit ` R ) ) )
8 7 simp1bi
 |-  ( F e. C -> F e. B )