Metamath Proof Explorer


Theorem uc1pldg

Description: Unitic polynomials have unit leading coefficients. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses uc1pldg.d
|- D = ( deg1 ` R )
uc1pldg.u
|- U = ( Unit ` R )
uc1pldg.c
|- C = ( Unic1p ` R )
Assertion uc1pldg
|- ( F e. C -> ( ( coe1 ` F ) ` ( D ` F ) ) e. U )

Proof

Step Hyp Ref Expression
1 uc1pldg.d
 |-  D = ( deg1 ` R )
2 uc1pldg.u
 |-  U = ( Unit ` R )
3 uc1pldg.c
 |-  C = ( Unic1p ` R )
4 eqid
 |-  ( Poly1 ` R ) = ( Poly1 ` R )
5 eqid
 |-  ( Base ` ( Poly1 ` R ) ) = ( Base ` ( Poly1 ` R ) )
6 eqid
 |-  ( 0g ` ( Poly1 ` R ) ) = ( 0g ` ( Poly1 ` R ) )
7 4 5 6 1 3 2 isuc1p
 |-  ( F e. C <-> ( F e. ( Base ` ( Poly1 ` R ) ) /\ F =/= ( 0g ` ( Poly1 ` R ) ) /\ ( ( coe1 ` F ) ` ( D ` F ) ) e. U ) )
8 7 simp3bi
 |-  ( F e. C -> ( ( coe1 ` F ) ` ( D ` F ) ) e. U )