Step |
Hyp |
Ref |
Expression |
1 |
|
uc1pmon1p.c |
|- C = ( Unic1p ` R ) |
2 |
|
uc1pmon1p.m |
|- M = ( Monic1p ` R ) |
3 |
|
uc1pmon1p.p |
|- P = ( Poly1 ` R ) |
4 |
|
uc1pmon1p.t |
|- .x. = ( .r ` P ) |
5 |
|
uc1pmon1p.a |
|- A = ( algSc ` P ) |
6 |
|
uc1pmon1p.d |
|- D = ( deg1 ` R ) |
7 |
|
uc1pmon1p.i |
|- I = ( invr ` R ) |
8 |
3
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
9 |
8
|
adantr |
|- ( ( R e. Ring /\ X e. C ) -> P e. Ring ) |
10 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
11 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
12 |
3 5 10 11
|
ply1sclf |
|- ( R e. Ring -> A : ( Base ` R ) --> ( Base ` P ) ) |
13 |
12
|
adantr |
|- ( ( R e. Ring /\ X e. C ) -> A : ( Base ` R ) --> ( Base ` P ) ) |
14 |
|
eqid |
|- ( Unit ` R ) = ( Unit ` R ) |
15 |
6 14 1
|
uc1pldg |
|- ( X e. C -> ( ( coe1 ` X ) ` ( D ` X ) ) e. ( Unit ` R ) ) |
16 |
14 7 10
|
ringinvcl |
|- ( ( R e. Ring /\ ( ( coe1 ` X ) ` ( D ` X ) ) e. ( Unit ` R ) ) -> ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) e. ( Base ` R ) ) |
17 |
15 16
|
sylan2 |
|- ( ( R e. Ring /\ X e. C ) -> ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) e. ( Base ` R ) ) |
18 |
13 17
|
ffvelrnd |
|- ( ( R e. Ring /\ X e. C ) -> ( A ` ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) ) e. ( Base ` P ) ) |
19 |
3 11 1
|
uc1pcl |
|- ( X e. C -> X e. ( Base ` P ) ) |
20 |
19
|
adantl |
|- ( ( R e. Ring /\ X e. C ) -> X e. ( Base ` P ) ) |
21 |
11 4
|
ringcl |
|- ( ( P e. Ring /\ ( A ` ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) ) e. ( Base ` P ) /\ X e. ( Base ` P ) ) -> ( ( A ` ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) ) .x. X ) e. ( Base ` P ) ) |
22 |
9 18 20 21
|
syl3anc |
|- ( ( R e. Ring /\ X e. C ) -> ( ( A ` ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) ) .x. X ) e. ( Base ` P ) ) |
23 |
|
simpl |
|- ( ( R e. Ring /\ X e. C ) -> R e. Ring ) |
24 |
|
eqid |
|- ( RLReg ` R ) = ( RLReg ` R ) |
25 |
24 14
|
unitrrg |
|- ( R e. Ring -> ( Unit ` R ) C_ ( RLReg ` R ) ) |
26 |
25
|
adantr |
|- ( ( R e. Ring /\ X e. C ) -> ( Unit ` R ) C_ ( RLReg ` R ) ) |
27 |
14 7
|
unitinvcl |
|- ( ( R e. Ring /\ ( ( coe1 ` X ) ` ( D ` X ) ) e. ( Unit ` R ) ) -> ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) e. ( Unit ` R ) ) |
28 |
15 27
|
sylan2 |
|- ( ( R e. Ring /\ X e. C ) -> ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) e. ( Unit ` R ) ) |
29 |
26 28
|
sseldd |
|- ( ( R e. Ring /\ X e. C ) -> ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) e. ( RLReg ` R ) ) |
30 |
6 3 24 11 4 5
|
deg1mul3 |
|- ( ( R e. Ring /\ ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) e. ( RLReg ` R ) /\ X e. ( Base ` P ) ) -> ( D ` ( ( A ` ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) ) .x. X ) ) = ( D ` X ) ) |
31 |
23 29 20 30
|
syl3anc |
|- ( ( R e. Ring /\ X e. C ) -> ( D ` ( ( A ` ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) ) .x. X ) ) = ( D ` X ) ) |
32 |
6 1
|
uc1pdeg |
|- ( ( R e. Ring /\ X e. C ) -> ( D ` X ) e. NN0 ) |
33 |
31 32
|
eqeltrd |
|- ( ( R e. Ring /\ X e. C ) -> ( D ` ( ( A ` ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) ) .x. X ) ) e. NN0 ) |
34 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
35 |
6 3 34 11
|
deg1nn0clb |
|- ( ( R e. Ring /\ ( ( A ` ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) ) .x. X ) e. ( Base ` P ) ) -> ( ( ( A ` ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) ) .x. X ) =/= ( 0g ` P ) <-> ( D ` ( ( A ` ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) ) .x. X ) ) e. NN0 ) ) |
36 |
22 35
|
syldan |
|- ( ( R e. Ring /\ X e. C ) -> ( ( ( A ` ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) ) .x. X ) =/= ( 0g ` P ) <-> ( D ` ( ( A ` ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) ) .x. X ) ) e. NN0 ) ) |
37 |
33 36
|
mpbird |
|- ( ( R e. Ring /\ X e. C ) -> ( ( A ` ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) ) .x. X ) =/= ( 0g ` P ) ) |
38 |
31
|
fveq2d |
|- ( ( R e. Ring /\ X e. C ) -> ( ( coe1 ` ( ( A ` ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) ) .x. X ) ) ` ( D ` ( ( A ` ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) ) .x. X ) ) ) = ( ( coe1 ` ( ( A ` ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) ) .x. X ) ) ` ( D ` X ) ) ) |
39 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
40 |
3 11 10 5 4 39
|
coe1sclmul |
|- ( ( R e. Ring /\ ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) e. ( Base ` R ) /\ X e. ( Base ` P ) ) -> ( coe1 ` ( ( A ` ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) ) .x. X ) ) = ( ( NN0 X. { ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) } ) oF ( .r ` R ) ( coe1 ` X ) ) ) |
41 |
23 17 20 40
|
syl3anc |
|- ( ( R e. Ring /\ X e. C ) -> ( coe1 ` ( ( A ` ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) ) .x. X ) ) = ( ( NN0 X. { ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) } ) oF ( .r ` R ) ( coe1 ` X ) ) ) |
42 |
41
|
fveq1d |
|- ( ( R e. Ring /\ X e. C ) -> ( ( coe1 ` ( ( A ` ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) ) .x. X ) ) ` ( D ` X ) ) = ( ( ( NN0 X. { ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) } ) oF ( .r ` R ) ( coe1 ` X ) ) ` ( D ` X ) ) ) |
43 |
|
nn0ex |
|- NN0 e. _V |
44 |
43
|
a1i |
|- ( ( R e. Ring /\ X e. C ) -> NN0 e. _V ) |
45 |
|
fvexd |
|- ( ( R e. Ring /\ X e. C ) -> ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) e. _V ) |
46 |
|
eqid |
|- ( coe1 ` X ) = ( coe1 ` X ) |
47 |
46 11 3 10
|
coe1f |
|- ( X e. ( Base ` P ) -> ( coe1 ` X ) : NN0 --> ( Base ` R ) ) |
48 |
|
ffn |
|- ( ( coe1 ` X ) : NN0 --> ( Base ` R ) -> ( coe1 ` X ) Fn NN0 ) |
49 |
20 47 48
|
3syl |
|- ( ( R e. Ring /\ X e. C ) -> ( coe1 ` X ) Fn NN0 ) |
50 |
|
eqidd |
|- ( ( ( R e. Ring /\ X e. C ) /\ ( D ` X ) e. NN0 ) -> ( ( coe1 ` X ) ` ( D ` X ) ) = ( ( coe1 ` X ) ` ( D ` X ) ) ) |
51 |
44 45 49 50
|
ofc1 |
|- ( ( ( R e. Ring /\ X e. C ) /\ ( D ` X ) e. NN0 ) -> ( ( ( NN0 X. { ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) } ) oF ( .r ` R ) ( coe1 ` X ) ) ` ( D ` X ) ) = ( ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) ( .r ` R ) ( ( coe1 ` X ) ` ( D ` X ) ) ) ) |
52 |
32 51
|
mpdan |
|- ( ( R e. Ring /\ X e. C ) -> ( ( ( NN0 X. { ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) } ) oF ( .r ` R ) ( coe1 ` X ) ) ` ( D ` X ) ) = ( ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) ( .r ` R ) ( ( coe1 ` X ) ` ( D ` X ) ) ) ) |
53 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
54 |
14 7 39 53
|
unitlinv |
|- ( ( R e. Ring /\ ( ( coe1 ` X ) ` ( D ` X ) ) e. ( Unit ` R ) ) -> ( ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) ( .r ` R ) ( ( coe1 ` X ) ` ( D ` X ) ) ) = ( 1r ` R ) ) |
55 |
15 54
|
sylan2 |
|- ( ( R e. Ring /\ X e. C ) -> ( ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) ( .r ` R ) ( ( coe1 ` X ) ` ( D ` X ) ) ) = ( 1r ` R ) ) |
56 |
52 55
|
eqtrd |
|- ( ( R e. Ring /\ X e. C ) -> ( ( ( NN0 X. { ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) } ) oF ( .r ` R ) ( coe1 ` X ) ) ` ( D ` X ) ) = ( 1r ` R ) ) |
57 |
38 42 56
|
3eqtrd |
|- ( ( R e. Ring /\ X e. C ) -> ( ( coe1 ` ( ( A ` ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) ) .x. X ) ) ` ( D ` ( ( A ` ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) ) .x. X ) ) ) = ( 1r ` R ) ) |
58 |
3 11 34 6 2 53
|
ismon1p |
|- ( ( ( A ` ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) ) .x. X ) e. M <-> ( ( ( A ` ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) ) .x. X ) e. ( Base ` P ) /\ ( ( A ` ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) ) .x. X ) =/= ( 0g ` P ) /\ ( ( coe1 ` ( ( A ` ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) ) .x. X ) ) ` ( D ` ( ( A ` ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) ) .x. X ) ) ) = ( 1r ` R ) ) ) |
59 |
22 37 57 58
|
syl3anbrc |
|- ( ( R e. Ring /\ X e. C ) -> ( ( A ` ( I ` ( ( coe1 ` X ) ` ( D ` X ) ) ) ) .x. X ) e. M ) |