| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ucnprima.1 |  |-  ( ph -> U e. ( UnifOn ` X ) ) | 
						
							| 2 |  | ucnprima.2 |  |-  ( ph -> V e. ( UnifOn ` Y ) ) | 
						
							| 3 |  | ucnprima.3 |  |-  ( ph -> F e. ( U uCn V ) ) | 
						
							| 4 |  | ucnprima.4 |  |-  ( ph -> W e. V ) | 
						
							| 5 |  | ucnprima.5 |  |-  G = ( x e. X , y e. X |-> <. ( F ` x ) , ( F ` y ) >. ) | 
						
							| 6 | 1 2 3 4 5 | ucnima |  |-  ( ph -> E. r e. U ( G " r ) C_ W ) | 
						
							| 7 | 5 | mpofun |  |-  Fun G | 
						
							| 8 |  | ustssxp |  |-  ( ( U e. ( UnifOn ` X ) /\ r e. U ) -> r C_ ( X X. X ) ) | 
						
							| 9 | 1 8 | sylan |  |-  ( ( ph /\ r e. U ) -> r C_ ( X X. X ) ) | 
						
							| 10 |  | opex |  |-  <. ( F ` x ) , ( F ` y ) >. e. _V | 
						
							| 11 | 5 10 | dmmpo |  |-  dom G = ( X X. X ) | 
						
							| 12 | 9 11 | sseqtrrdi |  |-  ( ( ph /\ r e. U ) -> r C_ dom G ) | 
						
							| 13 |  | funimass3 |  |-  ( ( Fun G /\ r C_ dom G ) -> ( ( G " r ) C_ W <-> r C_ ( `' G " W ) ) ) | 
						
							| 14 | 7 12 13 | sylancr |  |-  ( ( ph /\ r e. U ) -> ( ( G " r ) C_ W <-> r C_ ( `' G " W ) ) ) | 
						
							| 15 | 14 | rexbidva |  |-  ( ph -> ( E. r e. U ( G " r ) C_ W <-> E. r e. U r C_ ( `' G " W ) ) ) | 
						
							| 16 | 6 15 | mpbid |  |-  ( ph -> E. r e. U r C_ ( `' G " W ) ) | 
						
							| 17 | 1 | adantr |  |-  ( ( ph /\ r e. U ) -> U e. ( UnifOn ` X ) ) | 
						
							| 18 |  | simpr |  |-  ( ( ph /\ r e. U ) -> r e. U ) | 
						
							| 19 |  | cnvimass |  |-  ( `' G " W ) C_ dom G | 
						
							| 20 | 19 11 | sseqtri |  |-  ( `' G " W ) C_ ( X X. X ) | 
						
							| 21 | 20 | a1i |  |-  ( ( ph /\ r e. U ) -> ( `' G " W ) C_ ( X X. X ) ) | 
						
							| 22 |  | ustssel |  |-  ( ( U e. ( UnifOn ` X ) /\ r e. U /\ ( `' G " W ) C_ ( X X. X ) ) -> ( r C_ ( `' G " W ) -> ( `' G " W ) e. U ) ) | 
						
							| 23 | 17 18 21 22 | syl3anc |  |-  ( ( ph /\ r e. U ) -> ( r C_ ( `' G " W ) -> ( `' G " W ) e. U ) ) | 
						
							| 24 | 23 | rexlimdva |  |-  ( ph -> ( E. r e. U r C_ ( `' G " W ) -> ( `' G " W ) e. U ) ) | 
						
							| 25 | 16 24 | mpd |  |-  ( ph -> ( `' G " W ) e. U ) |