Step |
Hyp |
Ref |
Expression |
1 |
|
ufdcringd.1 |
|- ( ph -> R e. UFD ) |
2 |
|
eqid |
|- ( AbsVal ` R ) = ( AbsVal ` R ) |
3 |
|
eqid |
|- ( PrmIdeal ` R ) = ( PrmIdeal ` R ) |
4 |
|
eqid |
|- ( RPrime ` R ) = ( RPrime ` R ) |
5 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
6 |
2 3 4 5
|
isufd |
|- ( R e. UFD <-> ( R e. CRing /\ ( ( AbsVal ` R ) =/= (/) /\ A. i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ( i i^i ( RPrime ` R ) ) =/= (/) ) ) ) |
7 |
1 6
|
sylib |
|- ( ph -> ( R e. CRing /\ ( ( AbsVal ` R ) =/= (/) /\ A. i e. ( ( PrmIdeal ` R ) \ { { ( 0g ` R ) } } ) ( i i^i ( RPrime ` R ) ) =/= (/) ) ) ) |
8 |
7
|
simpld |
|- ( ph -> R e. CRing ) |