| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f0 |  |-  (/) : (/) --> (/) | 
						
							| 2 |  | dm0 |  |-  dom (/) = (/) | 
						
							| 3 |  | pw0 |  |-  ~P (/) = { (/) } | 
						
							| 4 | 3 | difeq1i |  |-  ( ~P (/) \ { (/) } ) = ( { (/) } \ { (/) } ) | 
						
							| 5 |  | difid |  |-  ( { (/) } \ { (/) } ) = (/) | 
						
							| 6 | 4 5 | eqtri |  |-  ( ~P (/) \ { (/) } ) = (/) | 
						
							| 7 | 2 6 | feq23i |  |-  ( (/) : dom (/) --> ( ~P (/) \ { (/) } ) <-> (/) : (/) --> (/) ) | 
						
							| 8 | 1 7 | mpbir |  |-  (/) : dom (/) --> ( ~P (/) \ { (/) } ) | 
						
							| 9 |  | 0ex |  |-  (/) e. _V | 
						
							| 10 |  | vtxval0 |  |-  ( Vtx ` (/) ) = (/) | 
						
							| 11 | 10 | eqcomi |  |-  (/) = ( Vtx ` (/) ) | 
						
							| 12 |  | iedgval0 |  |-  ( iEdg ` (/) ) = (/) | 
						
							| 13 | 12 | eqcomi |  |-  (/) = ( iEdg ` (/) ) | 
						
							| 14 | 11 13 | isuhgr |  |-  ( (/) e. _V -> ( (/) e. UHGraph <-> (/) : dom (/) --> ( ~P (/) \ { (/) } ) ) ) | 
						
							| 15 | 9 14 | ax-mp |  |-  ( (/) e. UHGraph <-> (/) : dom (/) --> ( ~P (/) \ { (/) } ) ) | 
						
							| 16 | 8 15 | mpbir |  |-  (/) e. UHGraph |