Step |
Hyp |
Ref |
Expression |
1 |
|
uhgr0e.g |
|- ( ph -> G e. W ) |
2 |
|
uhgr0e.e |
|- ( ph -> ( iEdg ` G ) = (/) ) |
3 |
|
f0 |
|- (/) : (/) --> ( ~P ( Vtx ` G ) \ { (/) } ) |
4 |
|
dm0 |
|- dom (/) = (/) |
5 |
4
|
feq2i |
|- ( (/) : dom (/) --> ( ~P ( Vtx ` G ) \ { (/) } ) <-> (/) : (/) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) |
6 |
3 5
|
mpbir |
|- (/) : dom (/) --> ( ~P ( Vtx ` G ) \ { (/) } ) |
7 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
8 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
9 |
7 8
|
isuhgr |
|- ( G e. W -> ( G e. UHGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) ) |
10 |
1 9
|
syl |
|- ( ph -> ( G e. UHGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) ) |
11 |
|
id |
|- ( ( iEdg ` G ) = (/) -> ( iEdg ` G ) = (/) ) |
12 |
|
dmeq |
|- ( ( iEdg ` G ) = (/) -> dom ( iEdg ` G ) = dom (/) ) |
13 |
11 12
|
feq12d |
|- ( ( iEdg ` G ) = (/) -> ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) <-> (/) : dom (/) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) ) |
14 |
2 13
|
syl |
|- ( ph -> ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) <-> (/) : dom (/) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) ) |
15 |
10 14
|
bitrd |
|- ( ph -> ( G e. UHGraph <-> (/) : dom (/) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) ) |
16 |
6 15
|
mpbiri |
|- ( ph -> G e. UHGraph ) |