| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uhgr0e.g |  |-  ( ph -> G e. W ) | 
						
							| 2 |  | uhgr0e.e |  |-  ( ph -> ( iEdg ` G ) = (/) ) | 
						
							| 3 |  | f0 |  |-  (/) : (/) --> ( ~P ( Vtx ` G ) \ { (/) } ) | 
						
							| 4 |  | dm0 |  |-  dom (/) = (/) | 
						
							| 5 | 4 | feq2i |  |-  ( (/) : dom (/) --> ( ~P ( Vtx ` G ) \ { (/) } ) <-> (/) : (/) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) | 
						
							| 6 | 3 5 | mpbir |  |-  (/) : dom (/) --> ( ~P ( Vtx ` G ) \ { (/) } ) | 
						
							| 7 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 8 |  | eqid |  |-  ( iEdg ` G ) = ( iEdg ` G ) | 
						
							| 9 | 7 8 | isuhgr |  |-  ( G e. W -> ( G e. UHGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) ) | 
						
							| 10 | 1 9 | syl |  |-  ( ph -> ( G e. UHGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) ) | 
						
							| 11 |  | id |  |-  ( ( iEdg ` G ) = (/) -> ( iEdg ` G ) = (/) ) | 
						
							| 12 |  | dmeq |  |-  ( ( iEdg ` G ) = (/) -> dom ( iEdg ` G ) = dom (/) ) | 
						
							| 13 | 11 12 | feq12d |  |-  ( ( iEdg ` G ) = (/) -> ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) <-> (/) : dom (/) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) ) | 
						
							| 14 | 2 13 | syl |  |-  ( ph -> ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) <-> (/) : dom (/) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) ) | 
						
							| 15 | 10 14 | bitrd |  |-  ( ph -> ( G e. UHGraph <-> (/) : dom (/) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) ) | 
						
							| 16 | 6 15 | mpbiri |  |-  ( ph -> G e. UHGraph ) |