Description: A hypergraph is 0-regular if it has no edges. (Contributed by AV, 19-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | uhgr0edg0rgr | |- ( ( G e. UHGraph /\ ( Edg ` G ) = (/) ) -> G RegGraph 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgriedg0edg0 | |- ( G e. UHGraph -> ( ( Edg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) |
|
2 | 1 | biimpa | |- ( ( G e. UHGraph /\ ( Edg ` G ) = (/) ) -> ( iEdg ` G ) = (/) ) |
3 | 0edg0rgr | |- ( ( G e. UHGraph /\ ( iEdg ` G ) = (/) ) -> G RegGraph 0 ) |
|
4 | 2 3 | syldan | |- ( ( G e. UHGraph /\ ( Edg ` G ) = (/) ) -> G RegGraph 0 ) |