| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 2 |  | eqid |  |-  ( Edg ` G ) = ( Edg ` G ) | 
						
							| 3 | 1 2 | uhgr0vsize0 |  |-  ( ( G e. UHGraph /\ ( # ` ( Vtx ` G ) ) = 0 ) -> ( # ` ( Edg ` G ) ) = 0 ) | 
						
							| 4 |  | fvex |  |-  ( Edg ` G ) e. _V | 
						
							| 5 |  | hasheq0 |  |-  ( ( Edg ` G ) e. _V -> ( ( # ` ( Edg ` G ) ) = 0 <-> ( Edg ` G ) = (/) ) ) | 
						
							| 6 | 4 5 | ax-mp |  |-  ( ( # ` ( Edg ` G ) ) = 0 <-> ( Edg ` G ) = (/) ) | 
						
							| 7 |  | 0fi |  |-  (/) e. Fin | 
						
							| 8 |  | eleq1 |  |-  ( ( Edg ` G ) = (/) -> ( ( Edg ` G ) e. Fin <-> (/) e. Fin ) ) | 
						
							| 9 | 7 8 | mpbiri |  |-  ( ( Edg ` G ) = (/) -> ( Edg ` G ) e. Fin ) | 
						
							| 10 | 6 9 | sylbi |  |-  ( ( # ` ( Edg ` G ) ) = 0 -> ( Edg ` G ) e. Fin ) | 
						
							| 11 | 3 10 | syl |  |-  ( ( G e. UHGraph /\ ( # ` ( Vtx ` G ) ) = 0 ) -> ( Edg ` G ) e. Fin ) |