Step |
Hyp |
Ref |
Expression |
1 |
|
uhgr0v0e.v |
|- V = ( Vtx ` G ) |
2 |
|
uhgr0v0e.e |
|- E = ( Edg ` G ) |
3 |
1
|
eqeq1i |
|- ( V = (/) <-> ( Vtx ` G ) = (/) ) |
4 |
|
uhgr0vb |
|- ( ( G e. UHGraph /\ ( Vtx ` G ) = (/) ) -> ( G e. UHGraph <-> ( iEdg ` G ) = (/) ) ) |
5 |
4
|
biimpd |
|- ( ( G e. UHGraph /\ ( Vtx ` G ) = (/) ) -> ( G e. UHGraph -> ( iEdg ` G ) = (/) ) ) |
6 |
5
|
ex |
|- ( G e. UHGraph -> ( ( Vtx ` G ) = (/) -> ( G e. UHGraph -> ( iEdg ` G ) = (/) ) ) ) |
7 |
3 6
|
syl5bi |
|- ( G e. UHGraph -> ( V = (/) -> ( G e. UHGraph -> ( iEdg ` G ) = (/) ) ) ) |
8 |
7
|
pm2.43a |
|- ( G e. UHGraph -> ( V = (/) -> ( iEdg ` G ) = (/) ) ) |
9 |
8
|
imp |
|- ( ( G e. UHGraph /\ V = (/) ) -> ( iEdg ` G ) = (/) ) |
10 |
2
|
eqeq1i |
|- ( E = (/) <-> ( Edg ` G ) = (/) ) |
11 |
|
uhgriedg0edg0 |
|- ( G e. UHGraph -> ( ( Edg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) |
12 |
10 11
|
syl5bb |
|- ( G e. UHGraph -> ( E = (/) <-> ( iEdg ` G ) = (/) ) ) |
13 |
12
|
adantr |
|- ( ( G e. UHGraph /\ V = (/) ) -> ( E = (/) <-> ( iEdg ` G ) = (/) ) ) |
14 |
9 13
|
mpbird |
|- ( ( G e. UHGraph /\ V = (/) ) -> E = (/) ) |