| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uhgr0v0e.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | uhgr0v0e.e |  |-  E = ( Edg ` G ) | 
						
							| 3 | 1 | eqeq1i |  |-  ( V = (/) <-> ( Vtx ` G ) = (/) ) | 
						
							| 4 |  | uhgr0vb |  |-  ( ( G e. UHGraph /\ ( Vtx ` G ) = (/) ) -> ( G e. UHGraph <-> ( iEdg ` G ) = (/) ) ) | 
						
							| 5 | 4 | biimpd |  |-  ( ( G e. UHGraph /\ ( Vtx ` G ) = (/) ) -> ( G e. UHGraph -> ( iEdg ` G ) = (/) ) ) | 
						
							| 6 | 5 | ex |  |-  ( G e. UHGraph -> ( ( Vtx ` G ) = (/) -> ( G e. UHGraph -> ( iEdg ` G ) = (/) ) ) ) | 
						
							| 7 | 3 6 | biimtrid |  |-  ( G e. UHGraph -> ( V = (/) -> ( G e. UHGraph -> ( iEdg ` G ) = (/) ) ) ) | 
						
							| 8 | 7 | pm2.43a |  |-  ( G e. UHGraph -> ( V = (/) -> ( iEdg ` G ) = (/) ) ) | 
						
							| 9 | 8 | imp |  |-  ( ( G e. UHGraph /\ V = (/) ) -> ( iEdg ` G ) = (/) ) | 
						
							| 10 | 2 | eqeq1i |  |-  ( E = (/) <-> ( Edg ` G ) = (/) ) | 
						
							| 11 |  | uhgriedg0edg0 |  |-  ( G e. UHGraph -> ( ( Edg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) | 
						
							| 12 | 10 11 | bitrid |  |-  ( G e. UHGraph -> ( E = (/) <-> ( iEdg ` G ) = (/) ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( G e. UHGraph /\ V = (/) ) -> ( E = (/) <-> ( iEdg ` G ) = (/) ) ) | 
						
							| 14 | 9 13 | mpbird |  |-  ( ( G e. UHGraph /\ V = (/) ) -> E = (/) ) |