| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uhgr0v0e.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | uhgr0v0e.e |  |-  E = ( Edg ` G ) | 
						
							| 3 | 1 2 | uhgr0v0e |  |-  ( ( G e. UHGraph /\ V = (/) ) -> E = (/) ) | 
						
							| 4 | 3 | ex |  |-  ( G e. UHGraph -> ( V = (/) -> E = (/) ) ) | 
						
							| 5 | 1 | fvexi |  |-  V e. _V | 
						
							| 6 |  | hasheq0 |  |-  ( V e. _V -> ( ( # ` V ) = 0 <-> V = (/) ) ) | 
						
							| 7 | 5 6 | ax-mp |  |-  ( ( # ` V ) = 0 <-> V = (/) ) | 
						
							| 8 | 2 | fvexi |  |-  E e. _V | 
						
							| 9 |  | hasheq0 |  |-  ( E e. _V -> ( ( # ` E ) = 0 <-> E = (/) ) ) | 
						
							| 10 | 8 9 | ax-mp |  |-  ( ( # ` E ) = 0 <-> E = (/) ) | 
						
							| 11 | 4 7 10 | 3imtr4g |  |-  ( G e. UHGraph -> ( ( # ` V ) = 0 -> ( # ` E ) = 0 ) ) | 
						
							| 12 | 11 | imp |  |-  ( ( G e. UHGraph /\ ( # ` V ) = 0 ) -> ( # ` E ) = 0 ) |