Step |
Hyp |
Ref |
Expression |
1 |
|
uhgr3cyclex.v |
|- V = ( Vtx ` G ) |
2 |
|
uhgr3cyclex.e |
|- E = ( Edg ` G ) |
3 |
2
|
eleq2i |
|- ( { A , B } e. E <-> { A , B } e. ( Edg ` G ) ) |
4 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
5 |
4
|
uhgredgiedgb |
|- ( G e. UHGraph -> ( { A , B } e. ( Edg ` G ) <-> E. i e. dom ( iEdg ` G ) { A , B } = ( ( iEdg ` G ) ` i ) ) ) |
6 |
3 5
|
syl5bb |
|- ( G e. UHGraph -> ( { A , B } e. E <-> E. i e. dom ( iEdg ` G ) { A , B } = ( ( iEdg ` G ) ` i ) ) ) |
7 |
2
|
eleq2i |
|- ( { B , C } e. E <-> { B , C } e. ( Edg ` G ) ) |
8 |
4
|
uhgredgiedgb |
|- ( G e. UHGraph -> ( { B , C } e. ( Edg ` G ) <-> E. j e. dom ( iEdg ` G ) { B , C } = ( ( iEdg ` G ) ` j ) ) ) |
9 |
7 8
|
syl5bb |
|- ( G e. UHGraph -> ( { B , C } e. E <-> E. j e. dom ( iEdg ` G ) { B , C } = ( ( iEdg ` G ) ` j ) ) ) |
10 |
2
|
eleq2i |
|- ( { C , A } e. E <-> { C , A } e. ( Edg ` G ) ) |
11 |
4
|
uhgredgiedgb |
|- ( G e. UHGraph -> ( { C , A } e. ( Edg ` G ) <-> E. k e. dom ( iEdg ` G ) { C , A } = ( ( iEdg ` G ) ` k ) ) ) |
12 |
10 11
|
syl5bb |
|- ( G e. UHGraph -> ( { C , A } e. E <-> E. k e. dom ( iEdg ` G ) { C , A } = ( ( iEdg ` G ) ` k ) ) ) |
13 |
6 9 12
|
3anbi123d |
|- ( G e. UHGraph -> ( ( { A , B } e. E /\ { B , C } e. E /\ { C , A } e. E ) <-> ( E. i e. dom ( iEdg ` G ) { A , B } = ( ( iEdg ` G ) ` i ) /\ E. j e. dom ( iEdg ` G ) { B , C } = ( ( iEdg ` G ) ` j ) /\ E. k e. dom ( iEdg ` G ) { C , A } = ( ( iEdg ` G ) ` k ) ) ) ) |
14 |
13
|
adantr |
|- ( ( G e. UHGraph /\ ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) ) -> ( ( { A , B } e. E /\ { B , C } e. E /\ { C , A } e. E ) <-> ( E. i e. dom ( iEdg ` G ) { A , B } = ( ( iEdg ` G ) ` i ) /\ E. j e. dom ( iEdg ` G ) { B , C } = ( ( iEdg ` G ) ` j ) /\ E. k e. dom ( iEdg ` G ) { C , A } = ( ( iEdg ` G ) ` k ) ) ) ) |
15 |
|
eqid |
|- <" A B C A "> = <" A B C A "> |
16 |
|
eqid |
|- <" i j k "> = <" i j k "> |
17 |
|
3simpa |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( A e. V /\ B e. V ) ) |
18 |
|
pm3.22 |
|- ( ( A e. V /\ C e. V ) -> ( C e. V /\ A e. V ) ) |
19 |
18
|
3adant2 |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( C e. V /\ A e. V ) ) |
20 |
17 19
|
jca |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( ( A e. V /\ B e. V ) /\ ( C e. V /\ A e. V ) ) ) |
21 |
20
|
adantr |
|- ( ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( ( A e. V /\ B e. V ) /\ ( C e. V /\ A e. V ) ) ) |
22 |
21
|
ad2antlr |
|- ( ( ( G e. UHGraph /\ ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) ) /\ ( ( j e. dom ( iEdg ` G ) /\ { B , C } = ( ( iEdg ` G ) ` j ) ) /\ ( k e. dom ( iEdg ` G ) /\ { C , A } = ( ( iEdg ` G ) ` k ) ) /\ ( i e. dom ( iEdg ` G ) /\ { A , B } = ( ( iEdg ` G ) ` i ) ) ) ) -> ( ( A e. V /\ B e. V ) /\ ( C e. V /\ A e. V ) ) ) |
23 |
|
3simpa |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( A =/= B /\ A =/= C ) ) |
24 |
|
necom |
|- ( A =/= B <-> B =/= A ) |
25 |
24
|
biimpi |
|- ( A =/= B -> B =/= A ) |
26 |
25
|
anim1ci |
|- ( ( A =/= B /\ B =/= C ) -> ( B =/= C /\ B =/= A ) ) |
27 |
26
|
3adant2 |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( B =/= C /\ B =/= A ) ) |
28 |
|
necom |
|- ( A =/= C <-> C =/= A ) |
29 |
28
|
biimpi |
|- ( A =/= C -> C =/= A ) |
30 |
29
|
3ad2ant2 |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> C =/= A ) |
31 |
23 27 30
|
3jca |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= A ) /\ C =/= A ) ) |
32 |
31
|
adantl |
|- ( ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= A ) /\ C =/= A ) ) |
33 |
32
|
ad2antlr |
|- ( ( ( G e. UHGraph /\ ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) ) /\ ( ( j e. dom ( iEdg ` G ) /\ { B , C } = ( ( iEdg ` G ) ` j ) ) /\ ( k e. dom ( iEdg ` G ) /\ { C , A } = ( ( iEdg ` G ) ` k ) ) /\ ( i e. dom ( iEdg ` G ) /\ { A , B } = ( ( iEdg ` G ) ` i ) ) ) ) -> ( ( A =/= B /\ A =/= C ) /\ ( B =/= C /\ B =/= A ) /\ C =/= A ) ) |
34 |
|
eqimss |
|- ( { A , B } = ( ( iEdg ` G ) ` i ) -> { A , B } C_ ( ( iEdg ` G ) ` i ) ) |
35 |
34
|
adantl |
|- ( ( i e. dom ( iEdg ` G ) /\ { A , B } = ( ( iEdg ` G ) ` i ) ) -> { A , B } C_ ( ( iEdg ` G ) ` i ) ) |
36 |
35
|
3ad2ant3 |
|- ( ( ( j e. dom ( iEdg ` G ) /\ { B , C } = ( ( iEdg ` G ) ` j ) ) /\ ( k e. dom ( iEdg ` G ) /\ { C , A } = ( ( iEdg ` G ) ` k ) ) /\ ( i e. dom ( iEdg ` G ) /\ { A , B } = ( ( iEdg ` G ) ` i ) ) ) -> { A , B } C_ ( ( iEdg ` G ) ` i ) ) |
37 |
|
eqimss |
|- ( { B , C } = ( ( iEdg ` G ) ` j ) -> { B , C } C_ ( ( iEdg ` G ) ` j ) ) |
38 |
37
|
adantl |
|- ( ( j e. dom ( iEdg ` G ) /\ { B , C } = ( ( iEdg ` G ) ` j ) ) -> { B , C } C_ ( ( iEdg ` G ) ` j ) ) |
39 |
38
|
3ad2ant1 |
|- ( ( ( j e. dom ( iEdg ` G ) /\ { B , C } = ( ( iEdg ` G ) ` j ) ) /\ ( k e. dom ( iEdg ` G ) /\ { C , A } = ( ( iEdg ` G ) ` k ) ) /\ ( i e. dom ( iEdg ` G ) /\ { A , B } = ( ( iEdg ` G ) ` i ) ) ) -> { B , C } C_ ( ( iEdg ` G ) ` j ) ) |
40 |
|
eqimss |
|- ( { C , A } = ( ( iEdg ` G ) ` k ) -> { C , A } C_ ( ( iEdg ` G ) ` k ) ) |
41 |
40
|
adantl |
|- ( ( k e. dom ( iEdg ` G ) /\ { C , A } = ( ( iEdg ` G ) ` k ) ) -> { C , A } C_ ( ( iEdg ` G ) ` k ) ) |
42 |
41
|
3ad2ant2 |
|- ( ( ( j e. dom ( iEdg ` G ) /\ { B , C } = ( ( iEdg ` G ) ` j ) ) /\ ( k e. dom ( iEdg ` G ) /\ { C , A } = ( ( iEdg ` G ) ` k ) ) /\ ( i e. dom ( iEdg ` G ) /\ { A , B } = ( ( iEdg ` G ) ` i ) ) ) -> { C , A } C_ ( ( iEdg ` G ) ` k ) ) |
43 |
36 39 42
|
3jca |
|- ( ( ( j e. dom ( iEdg ` G ) /\ { B , C } = ( ( iEdg ` G ) ` j ) ) /\ ( k e. dom ( iEdg ` G ) /\ { C , A } = ( ( iEdg ` G ) ` k ) ) /\ ( i e. dom ( iEdg ` G ) /\ { A , B } = ( ( iEdg ` G ) ` i ) ) ) -> ( { A , B } C_ ( ( iEdg ` G ) ` i ) /\ { B , C } C_ ( ( iEdg ` G ) ` j ) /\ { C , A } C_ ( ( iEdg ` G ) ` k ) ) ) |
44 |
43
|
adantl |
|- ( ( ( G e. UHGraph /\ ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) ) /\ ( ( j e. dom ( iEdg ` G ) /\ { B , C } = ( ( iEdg ` G ) ` j ) ) /\ ( k e. dom ( iEdg ` G ) /\ { C , A } = ( ( iEdg ` G ) ` k ) ) /\ ( i e. dom ( iEdg ` G ) /\ { A , B } = ( ( iEdg ` G ) ` i ) ) ) ) -> ( { A , B } C_ ( ( iEdg ` G ) ` i ) /\ { B , C } C_ ( ( iEdg ` G ) ` j ) /\ { C , A } C_ ( ( iEdg ` G ) ` k ) ) ) |
45 |
|
simp3 |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> C e. V ) |
46 |
|
simp1 |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> A e. V ) |
47 |
45 46
|
jca |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( C e. V /\ A e. V ) ) |
48 |
47 30
|
anim12i |
|- ( ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( ( C e. V /\ A e. V ) /\ C =/= A ) ) |
49 |
48
|
adantl |
|- ( ( G e. UHGraph /\ ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) ) -> ( ( C e. V /\ A e. V ) /\ C =/= A ) ) |
50 |
|
pm3.22 |
|- ( ( ( j e. dom ( iEdg ` G ) /\ { B , C } = ( ( iEdg ` G ) ` j ) ) /\ ( i e. dom ( iEdg ` G ) /\ { A , B } = ( ( iEdg ` G ) ` i ) ) ) -> ( ( i e. dom ( iEdg ` G ) /\ { A , B } = ( ( iEdg ` G ) ` i ) ) /\ ( j e. dom ( iEdg ` G ) /\ { B , C } = ( ( iEdg ` G ) ` j ) ) ) ) |
51 |
50
|
3adant2 |
|- ( ( ( j e. dom ( iEdg ` G ) /\ { B , C } = ( ( iEdg ` G ) ` j ) ) /\ ( k e. dom ( iEdg ` G ) /\ { C , A } = ( ( iEdg ` G ) ` k ) ) /\ ( i e. dom ( iEdg ` G ) /\ { A , B } = ( ( iEdg ` G ) ` i ) ) ) -> ( ( i e. dom ( iEdg ` G ) /\ { A , B } = ( ( iEdg ` G ) ` i ) ) /\ ( j e. dom ( iEdg ` G ) /\ { B , C } = ( ( iEdg ` G ) ` j ) ) ) ) |
52 |
1 2 4
|
uhgr3cyclexlem |
|- ( ( ( ( C e. V /\ A e. V ) /\ C =/= A ) /\ ( ( i e. dom ( iEdg ` G ) /\ { A , B } = ( ( iEdg ` G ) ` i ) ) /\ ( j e. dom ( iEdg ` G ) /\ { B , C } = ( ( iEdg ` G ) ` j ) ) ) ) -> i =/= j ) |
53 |
49 51 52
|
syl2an |
|- ( ( ( G e. UHGraph /\ ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) ) /\ ( ( j e. dom ( iEdg ` G ) /\ { B , C } = ( ( iEdg ` G ) ` j ) ) /\ ( k e. dom ( iEdg ` G ) /\ { C , A } = ( ( iEdg ` G ) ` k ) ) /\ ( i e. dom ( iEdg ` G ) /\ { A , B } = ( ( iEdg ` G ) ` i ) ) ) ) -> i =/= j ) |
54 |
|
3simpc |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( B e. V /\ C e. V ) ) |
55 |
|
simp3 |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> B =/= C ) |
56 |
54 55
|
anim12i |
|- ( ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( ( B e. V /\ C e. V ) /\ B =/= C ) ) |
57 |
56
|
adantl |
|- ( ( G e. UHGraph /\ ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) ) -> ( ( B e. V /\ C e. V ) /\ B =/= C ) ) |
58 |
|
3simpc |
|- ( ( ( j e. dom ( iEdg ` G ) /\ { B , C } = ( ( iEdg ` G ) ` j ) ) /\ ( k e. dom ( iEdg ` G ) /\ { C , A } = ( ( iEdg ` G ) ` k ) ) /\ ( i e. dom ( iEdg ` G ) /\ { A , B } = ( ( iEdg ` G ) ` i ) ) ) -> ( ( k e. dom ( iEdg ` G ) /\ { C , A } = ( ( iEdg ` G ) ` k ) ) /\ ( i e. dom ( iEdg ` G ) /\ { A , B } = ( ( iEdg ` G ) ` i ) ) ) ) |
59 |
1 2 4
|
uhgr3cyclexlem |
|- ( ( ( ( B e. V /\ C e. V ) /\ B =/= C ) /\ ( ( k e. dom ( iEdg ` G ) /\ { C , A } = ( ( iEdg ` G ) ` k ) ) /\ ( i e. dom ( iEdg ` G ) /\ { A , B } = ( ( iEdg ` G ) ` i ) ) ) ) -> k =/= i ) |
60 |
59
|
necomd |
|- ( ( ( ( B e. V /\ C e. V ) /\ B =/= C ) /\ ( ( k e. dom ( iEdg ` G ) /\ { C , A } = ( ( iEdg ` G ) ` k ) ) /\ ( i e. dom ( iEdg ` G ) /\ { A , B } = ( ( iEdg ` G ) ` i ) ) ) ) -> i =/= k ) |
61 |
57 58 60
|
syl2an |
|- ( ( ( G e. UHGraph /\ ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) ) /\ ( ( j e. dom ( iEdg ` G ) /\ { B , C } = ( ( iEdg ` G ) ` j ) ) /\ ( k e. dom ( iEdg ` G ) /\ { C , A } = ( ( iEdg ` G ) ` k ) ) /\ ( i e. dom ( iEdg ` G ) /\ { A , B } = ( ( iEdg ` G ) ` i ) ) ) ) -> i =/= k ) |
62 |
1 2 4
|
uhgr3cyclexlem |
|- ( ( ( ( A e. V /\ B e. V ) /\ A =/= B ) /\ ( ( j e. dom ( iEdg ` G ) /\ { B , C } = ( ( iEdg ` G ) ` j ) ) /\ ( k e. dom ( iEdg ` G ) /\ { C , A } = ( ( iEdg ` G ) ` k ) ) ) ) -> j =/= k ) |
63 |
62
|
exp31 |
|- ( ( A e. V /\ B e. V ) -> ( A =/= B -> ( ( ( j e. dom ( iEdg ` G ) /\ { B , C } = ( ( iEdg ` G ) ` j ) ) /\ ( k e. dom ( iEdg ` G ) /\ { C , A } = ( ( iEdg ` G ) ` k ) ) ) -> j =/= k ) ) ) |
64 |
63
|
3adant3 |
|- ( ( A e. V /\ B e. V /\ C e. V ) -> ( A =/= B -> ( ( ( j e. dom ( iEdg ` G ) /\ { B , C } = ( ( iEdg ` G ) ` j ) ) /\ ( k e. dom ( iEdg ` G ) /\ { C , A } = ( ( iEdg ` G ) ` k ) ) ) -> j =/= k ) ) ) |
65 |
64
|
com12 |
|- ( A =/= B -> ( ( A e. V /\ B e. V /\ C e. V ) -> ( ( ( j e. dom ( iEdg ` G ) /\ { B , C } = ( ( iEdg ` G ) ` j ) ) /\ ( k e. dom ( iEdg ` G ) /\ { C , A } = ( ( iEdg ` G ) ` k ) ) ) -> j =/= k ) ) ) |
66 |
65
|
3ad2ant1 |
|- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( ( A e. V /\ B e. V /\ C e. V ) -> ( ( ( j e. dom ( iEdg ` G ) /\ { B , C } = ( ( iEdg ` G ) ` j ) ) /\ ( k e. dom ( iEdg ` G ) /\ { C , A } = ( ( iEdg ` G ) ` k ) ) ) -> j =/= k ) ) ) |
67 |
66
|
impcom |
|- ( ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) -> ( ( ( j e. dom ( iEdg ` G ) /\ { B , C } = ( ( iEdg ` G ) ` j ) ) /\ ( k e. dom ( iEdg ` G ) /\ { C , A } = ( ( iEdg ` G ) ` k ) ) ) -> j =/= k ) ) |
68 |
67
|
adantl |
|- ( ( G e. UHGraph /\ ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) ) -> ( ( ( j e. dom ( iEdg ` G ) /\ { B , C } = ( ( iEdg ` G ) ` j ) ) /\ ( k e. dom ( iEdg ` G ) /\ { C , A } = ( ( iEdg ` G ) ` k ) ) ) -> j =/= k ) ) |
69 |
68
|
com12 |
|- ( ( ( j e. dom ( iEdg ` G ) /\ { B , C } = ( ( iEdg ` G ) ` j ) ) /\ ( k e. dom ( iEdg ` G ) /\ { C , A } = ( ( iEdg ` G ) ` k ) ) ) -> ( ( G e. UHGraph /\ ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) ) -> j =/= k ) ) |
70 |
69
|
3adant3 |
|- ( ( ( j e. dom ( iEdg ` G ) /\ { B , C } = ( ( iEdg ` G ) ` j ) ) /\ ( k e. dom ( iEdg ` G ) /\ { C , A } = ( ( iEdg ` G ) ` k ) ) /\ ( i e. dom ( iEdg ` G ) /\ { A , B } = ( ( iEdg ` G ) ` i ) ) ) -> ( ( G e. UHGraph /\ ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) ) -> j =/= k ) ) |
71 |
70
|
impcom |
|- ( ( ( G e. UHGraph /\ ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) ) /\ ( ( j e. dom ( iEdg ` G ) /\ { B , C } = ( ( iEdg ` G ) ` j ) ) /\ ( k e. dom ( iEdg ` G ) /\ { C , A } = ( ( iEdg ` G ) ` k ) ) /\ ( i e. dom ( iEdg ` G ) /\ { A , B } = ( ( iEdg ` G ) ` i ) ) ) ) -> j =/= k ) |
72 |
53 61 71
|
3jca |
|- ( ( ( G e. UHGraph /\ ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) ) /\ ( ( j e. dom ( iEdg ` G ) /\ { B , C } = ( ( iEdg ` G ) ` j ) ) /\ ( k e. dom ( iEdg ` G ) /\ { C , A } = ( ( iEdg ` G ) ` k ) ) /\ ( i e. dom ( iEdg ` G ) /\ { A , B } = ( ( iEdg ` G ) ` i ) ) ) ) -> ( i =/= j /\ i =/= k /\ j =/= k ) ) |
73 |
|
eqidd |
|- ( ( ( G e. UHGraph /\ ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) ) /\ ( ( j e. dom ( iEdg ` G ) /\ { B , C } = ( ( iEdg ` G ) ` j ) ) /\ ( k e. dom ( iEdg ` G ) /\ { C , A } = ( ( iEdg ` G ) ` k ) ) /\ ( i e. dom ( iEdg ` G ) /\ { A , B } = ( ( iEdg ` G ) ` i ) ) ) ) -> A = A ) |
74 |
15 16 22 33 44 1 4 72 73
|
3cyclpd |
|- ( ( ( G e. UHGraph /\ ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) ) /\ ( ( j e. dom ( iEdg ` G ) /\ { B , C } = ( ( iEdg ` G ) ` j ) ) /\ ( k e. dom ( iEdg ` G ) /\ { C , A } = ( ( iEdg ` G ) ` k ) ) /\ ( i e. dom ( iEdg ` G ) /\ { A , B } = ( ( iEdg ` G ) ` i ) ) ) ) -> ( <" i j k "> ( Cycles ` G ) <" A B C A "> /\ ( # ` <" i j k "> ) = 3 /\ ( <" A B C A "> ` 0 ) = A ) ) |
75 |
|
s3cli |
|- <" i j k "> e. Word _V |
76 |
75
|
elexi |
|- <" i j k "> e. _V |
77 |
|
s4cli |
|- <" A B C A "> e. Word _V |
78 |
77
|
elexi |
|- <" A B C A "> e. _V |
79 |
|
breq12 |
|- ( ( f = <" i j k "> /\ p = <" A B C A "> ) -> ( f ( Cycles ` G ) p <-> <" i j k "> ( Cycles ` G ) <" A B C A "> ) ) |
80 |
|
fveqeq2 |
|- ( f = <" i j k "> -> ( ( # ` f ) = 3 <-> ( # ` <" i j k "> ) = 3 ) ) |
81 |
80
|
adantr |
|- ( ( f = <" i j k "> /\ p = <" A B C A "> ) -> ( ( # ` f ) = 3 <-> ( # ` <" i j k "> ) = 3 ) ) |
82 |
|
fveq1 |
|- ( p = <" A B C A "> -> ( p ` 0 ) = ( <" A B C A "> ` 0 ) ) |
83 |
82
|
eqeq1d |
|- ( p = <" A B C A "> -> ( ( p ` 0 ) = A <-> ( <" A B C A "> ` 0 ) = A ) ) |
84 |
83
|
adantl |
|- ( ( f = <" i j k "> /\ p = <" A B C A "> ) -> ( ( p ` 0 ) = A <-> ( <" A B C A "> ` 0 ) = A ) ) |
85 |
79 81 84
|
3anbi123d |
|- ( ( f = <" i j k "> /\ p = <" A B C A "> ) -> ( ( f ( Cycles ` G ) p /\ ( # ` f ) = 3 /\ ( p ` 0 ) = A ) <-> ( <" i j k "> ( Cycles ` G ) <" A B C A "> /\ ( # ` <" i j k "> ) = 3 /\ ( <" A B C A "> ` 0 ) = A ) ) ) |
86 |
76 78 85
|
spc2ev |
|- ( ( <" i j k "> ( Cycles ` G ) <" A B C A "> /\ ( # ` <" i j k "> ) = 3 /\ ( <" A B C A "> ` 0 ) = A ) -> E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 3 /\ ( p ` 0 ) = A ) ) |
87 |
74 86
|
syl |
|- ( ( ( G e. UHGraph /\ ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) ) /\ ( ( j e. dom ( iEdg ` G ) /\ { B , C } = ( ( iEdg ` G ) ` j ) ) /\ ( k e. dom ( iEdg ` G ) /\ { C , A } = ( ( iEdg ` G ) ` k ) ) /\ ( i e. dom ( iEdg ` G ) /\ { A , B } = ( ( iEdg ` G ) ` i ) ) ) ) -> E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 3 /\ ( p ` 0 ) = A ) ) |
88 |
87
|
expcom |
|- ( ( ( j e. dom ( iEdg ` G ) /\ { B , C } = ( ( iEdg ` G ) ` j ) ) /\ ( k e. dom ( iEdg ` G ) /\ { C , A } = ( ( iEdg ` G ) ` k ) ) /\ ( i e. dom ( iEdg ` G ) /\ { A , B } = ( ( iEdg ` G ) ` i ) ) ) -> ( ( G e. UHGraph /\ ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) ) -> E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 3 /\ ( p ` 0 ) = A ) ) ) |
89 |
88
|
3exp |
|- ( ( j e. dom ( iEdg ` G ) /\ { B , C } = ( ( iEdg ` G ) ` j ) ) -> ( ( k e. dom ( iEdg ` G ) /\ { C , A } = ( ( iEdg ` G ) ` k ) ) -> ( ( i e. dom ( iEdg ` G ) /\ { A , B } = ( ( iEdg ` G ) ` i ) ) -> ( ( G e. UHGraph /\ ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) ) -> E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 3 /\ ( p ` 0 ) = A ) ) ) ) ) |
90 |
89
|
rexlimiva |
|- ( E. j e. dom ( iEdg ` G ) { B , C } = ( ( iEdg ` G ) ` j ) -> ( ( k e. dom ( iEdg ` G ) /\ { C , A } = ( ( iEdg ` G ) ` k ) ) -> ( ( i e. dom ( iEdg ` G ) /\ { A , B } = ( ( iEdg ` G ) ` i ) ) -> ( ( G e. UHGraph /\ ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) ) -> E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 3 /\ ( p ` 0 ) = A ) ) ) ) ) |
91 |
90
|
com12 |
|- ( ( k e. dom ( iEdg ` G ) /\ { C , A } = ( ( iEdg ` G ) ` k ) ) -> ( E. j e. dom ( iEdg ` G ) { B , C } = ( ( iEdg ` G ) ` j ) -> ( ( i e. dom ( iEdg ` G ) /\ { A , B } = ( ( iEdg ` G ) ` i ) ) -> ( ( G e. UHGraph /\ ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) ) -> E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 3 /\ ( p ` 0 ) = A ) ) ) ) ) |
92 |
91
|
rexlimiva |
|- ( E. k e. dom ( iEdg ` G ) { C , A } = ( ( iEdg ` G ) ` k ) -> ( E. j e. dom ( iEdg ` G ) { B , C } = ( ( iEdg ` G ) ` j ) -> ( ( i e. dom ( iEdg ` G ) /\ { A , B } = ( ( iEdg ` G ) ` i ) ) -> ( ( G e. UHGraph /\ ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) ) -> E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 3 /\ ( p ` 0 ) = A ) ) ) ) ) |
93 |
92
|
com13 |
|- ( ( i e. dom ( iEdg ` G ) /\ { A , B } = ( ( iEdg ` G ) ` i ) ) -> ( E. j e. dom ( iEdg ` G ) { B , C } = ( ( iEdg ` G ) ` j ) -> ( E. k e. dom ( iEdg ` G ) { C , A } = ( ( iEdg ` G ) ` k ) -> ( ( G e. UHGraph /\ ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) ) -> E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 3 /\ ( p ` 0 ) = A ) ) ) ) ) |
94 |
93
|
rexlimiva |
|- ( E. i e. dom ( iEdg ` G ) { A , B } = ( ( iEdg ` G ) ` i ) -> ( E. j e. dom ( iEdg ` G ) { B , C } = ( ( iEdg ` G ) ` j ) -> ( E. k e. dom ( iEdg ` G ) { C , A } = ( ( iEdg ` G ) ` k ) -> ( ( G e. UHGraph /\ ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) ) -> E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 3 /\ ( p ` 0 ) = A ) ) ) ) ) |
95 |
94
|
3imp |
|- ( ( E. i e. dom ( iEdg ` G ) { A , B } = ( ( iEdg ` G ) ` i ) /\ E. j e. dom ( iEdg ` G ) { B , C } = ( ( iEdg ` G ) ` j ) /\ E. k e. dom ( iEdg ` G ) { C , A } = ( ( iEdg ` G ) ` k ) ) -> ( ( G e. UHGraph /\ ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) ) -> E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 3 /\ ( p ` 0 ) = A ) ) ) |
96 |
95
|
com12 |
|- ( ( G e. UHGraph /\ ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) ) -> ( ( E. i e. dom ( iEdg ` G ) { A , B } = ( ( iEdg ` G ) ` i ) /\ E. j e. dom ( iEdg ` G ) { B , C } = ( ( iEdg ` G ) ` j ) /\ E. k e. dom ( iEdg ` G ) { C , A } = ( ( iEdg ` G ) ` k ) ) -> E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 3 /\ ( p ` 0 ) = A ) ) ) |
97 |
14 96
|
sylbid |
|- ( ( G e. UHGraph /\ ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) ) -> ( ( { A , B } e. E /\ { B , C } e. E /\ { C , A } e. E ) -> E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 3 /\ ( p ` 0 ) = A ) ) ) |
98 |
97
|
3impia |
|- ( ( G e. UHGraph /\ ( ( A e. V /\ B e. V /\ C e. V ) /\ ( A =/= B /\ A =/= C /\ B =/= C ) ) /\ ( { A , B } e. E /\ { B , C } e. E /\ { C , A } e. E ) ) -> E. f E. p ( f ( Cycles ` G ) p /\ ( # ` f ) = 3 /\ ( p ` 0 ) = A ) ) |