Description: An edge of a hypergraph is a nonempty subset of vertices. (Contributed by AV, 28-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | uhgredgn0 | |- ( ( G e. UHGraph /\ E e. ( Edg ` G ) ) -> E e. ( ~P ( Vtx ` G ) \ { (/) } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | edgval | |- ( Edg ` G ) = ran ( iEdg ` G ) |
|
2 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
3 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
4 | 2 3 | uhgrf | |- ( G e. UHGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) |
5 | 4 | frnd | |- ( G e. UHGraph -> ran ( iEdg ` G ) C_ ( ~P ( Vtx ` G ) \ { (/) } ) ) |
6 | 1 5 | eqsstrid | |- ( G e. UHGraph -> ( Edg ` G ) C_ ( ~P ( Vtx ` G ) \ { (/) } ) ) |
7 | 6 | sselda | |- ( ( G e. UHGraph /\ E e. ( Edg ` G ) ) -> E e. ( ~P ( Vtx ` G ) \ { (/) } ) ) |