Description: An edge of a hypergraph is a nonempty subset of vertices. (Contributed by AV, 28-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uhgredgn0 | |- ( ( G e. UHGraph /\ E e. ( Edg ` G ) ) -> E e. ( ~P ( Vtx ` G ) \ { (/) } ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | edgval | |- ( Edg ` G ) = ran ( iEdg ` G ) | |
| 2 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) | |
| 3 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) | |
| 4 | 2 3 | uhgrf |  |-  ( G e. UHGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) ) | 
| 5 | 4 | frnd |  |-  ( G e. UHGraph -> ran ( iEdg ` G ) C_ ( ~P ( Vtx ` G ) \ { (/) } ) ) | 
| 6 | 1 5 | eqsstrid |  |-  ( G e. UHGraph -> ( Edg ` G ) C_ ( ~P ( Vtx ` G ) \ { (/) } ) ) | 
| 7 | 6 | sselda |  |-  ( ( G e. UHGraph /\ E e. ( Edg ` G ) ) -> E e. ( ~P ( Vtx ` G ) \ { (/) } ) ) |