Metamath Proof Explorer


Theorem uhgredgn0

Description: An edge of a hypergraph is a nonempty subset of vertices. (Contributed by AV, 28-Nov-2020)

Ref Expression
Assertion uhgredgn0
|- ( ( G e. UHGraph /\ E e. ( Edg ` G ) ) -> E e. ( ~P ( Vtx ` G ) \ { (/) } ) )

Proof

Step Hyp Ref Expression
1 edgval
 |-  ( Edg ` G ) = ran ( iEdg ` G )
2 eqid
 |-  ( Vtx ` G ) = ( Vtx ` G )
3 eqid
 |-  ( iEdg ` G ) = ( iEdg ` G )
4 2 3 uhgrf
 |-  ( G e. UHGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P ( Vtx ` G ) \ { (/) } ) )
5 4 frnd
 |-  ( G e. UHGraph -> ran ( iEdg ` G ) C_ ( ~P ( Vtx ` G ) \ { (/) } ) )
6 1 5 eqsstrid
 |-  ( G e. UHGraph -> ( Edg ` G ) C_ ( ~P ( Vtx ` G ) \ { (/) } ) )
7 6 sselda
 |-  ( ( G e. UHGraph /\ E e. ( Edg ` G ) ) -> E e. ( ~P ( Vtx ` G ) \ { (/) } ) )