Metamath Proof Explorer


Theorem uhgredgss

Description: The set of edges of a hypergraph is a subset of the power set of vertices without the empty set. (Contributed by AV, 29-Nov-2020)

Ref Expression
Assertion uhgredgss
|- ( G e. UHGraph -> ( Edg ` G ) C_ ( ~P ( Vtx ` G ) \ { (/) } ) )

Proof

Step Hyp Ref Expression
1 uhgredgn0
 |-  ( ( G e. UHGraph /\ x e. ( Edg ` G ) ) -> x e. ( ~P ( Vtx ` G ) \ { (/) } ) )
2 1 ex
 |-  ( G e. UHGraph -> ( x e. ( Edg ` G ) -> x e. ( ~P ( Vtx ` G ) \ { (/) } ) ) )
3 2 ssrdv
 |-  ( G e. UHGraph -> ( Edg ` G ) C_ ( ~P ( Vtx ` G ) \ { (/) } ) )