Step |
Hyp |
Ref |
Expression |
1 |
|
uhgrf.v |
|- V = ( Vtx ` G ) |
2 |
|
uhgrf.e |
|- E = ( iEdg ` G ) |
3 |
|
uhgreq12g.w |
|- W = ( Vtx ` H ) |
4 |
|
uhgreq12g.f |
|- F = ( iEdg ` H ) |
5 |
1 2
|
isuhgr |
|- ( G e. X -> ( G e. UHGraph <-> E : dom E --> ( ~P V \ { (/) } ) ) ) |
6 |
5
|
adantr |
|- ( ( G e. X /\ H e. Y ) -> ( G e. UHGraph <-> E : dom E --> ( ~P V \ { (/) } ) ) ) |
7 |
6
|
adantr |
|- ( ( ( G e. X /\ H e. Y ) /\ ( V = W /\ E = F ) ) -> ( G e. UHGraph <-> E : dom E --> ( ~P V \ { (/) } ) ) ) |
8 |
|
simpr |
|- ( ( V = W /\ E = F ) -> E = F ) |
9 |
8
|
dmeqd |
|- ( ( V = W /\ E = F ) -> dom E = dom F ) |
10 |
|
pweq |
|- ( V = W -> ~P V = ~P W ) |
11 |
10
|
difeq1d |
|- ( V = W -> ( ~P V \ { (/) } ) = ( ~P W \ { (/) } ) ) |
12 |
11
|
adantr |
|- ( ( V = W /\ E = F ) -> ( ~P V \ { (/) } ) = ( ~P W \ { (/) } ) ) |
13 |
8 9 12
|
feq123d |
|- ( ( V = W /\ E = F ) -> ( E : dom E --> ( ~P V \ { (/) } ) <-> F : dom F --> ( ~P W \ { (/) } ) ) ) |
14 |
3 4
|
isuhgr |
|- ( H e. Y -> ( H e. UHGraph <-> F : dom F --> ( ~P W \ { (/) } ) ) ) |
15 |
14
|
adantl |
|- ( ( G e. X /\ H e. Y ) -> ( H e. UHGraph <-> F : dom F --> ( ~P W \ { (/) } ) ) ) |
16 |
15
|
bicomd |
|- ( ( G e. X /\ H e. Y ) -> ( F : dom F --> ( ~P W \ { (/) } ) <-> H e. UHGraph ) ) |
17 |
13 16
|
sylan9bbr |
|- ( ( ( G e. X /\ H e. Y ) /\ ( V = W /\ E = F ) ) -> ( E : dom E --> ( ~P V \ { (/) } ) <-> H e. UHGraph ) ) |
18 |
7 17
|
bitrd |
|- ( ( ( G e. X /\ H e. Y ) /\ ( V = W /\ E = F ) ) -> ( G e. UHGraph <-> H e. UHGraph ) ) |