Metamath Proof Explorer


Theorem uhgrf

Description: The edge function of an undirected hypergraph is a function into the power set of the set of vertices. (Contributed by Alexander van der Vekens, 26-Dec-2017) (Revised by AV, 9-Oct-2020)

Ref Expression
Hypotheses uhgrf.v
|- V = ( Vtx ` G )
uhgrf.e
|- E = ( iEdg ` G )
Assertion uhgrf
|- ( G e. UHGraph -> E : dom E --> ( ~P V \ { (/) } ) )

Proof

Step Hyp Ref Expression
1 uhgrf.v
 |-  V = ( Vtx ` G )
2 uhgrf.e
 |-  E = ( iEdg ` G )
3 1 2 isuhgr
 |-  ( G e. UHGraph -> ( G e. UHGraph <-> E : dom E --> ( ~P V \ { (/) } ) ) )
4 3 ibi
 |-  ( G e. UHGraph -> E : dom E --> ( ~P V \ { (/) } ) )