Metamath Proof Explorer


Theorem uhgrfun

Description: The edge function of an undirected hypergraph is a function. (Contributed by Alexander van der Vekens, 26-Dec-2017) (Revised by AV, 15-Dec-2020)

Ref Expression
Hypothesis uhgrfun.e
|- E = ( iEdg ` G )
Assertion uhgrfun
|- ( G e. UHGraph -> Fun E )

Proof

Step Hyp Ref Expression
1 uhgrfun.e
 |-  E = ( iEdg ` G )
2 eqid
 |-  ( Vtx ` G ) = ( Vtx ` G )
3 2 1 uhgrf
 |-  ( G e. UHGraph -> E : dom E --> ( ~P ( Vtx ` G ) \ { (/) } ) )
4 3 ffund
 |-  ( G e. UHGraph -> Fun E )