Description: A hypergraph has no edges iff its edge function is empty. (Contributed by AV, 21-Oct-2020) (Proof shortened by AV, 8-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | uhgriedg0edg0 | |- ( G e. UHGraph -> ( ( Edg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
2 | 1 | uhgrfun | |- ( G e. UHGraph -> Fun ( iEdg ` G ) ) |
3 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
4 | 1 3 | edg0iedg0 | |- ( Fun ( iEdg ` G ) -> ( ( Edg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) |
5 | 2 4 | syl | |- ( G e. UHGraph -> ( ( Edg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) |