Description: A hypergraph has no edges iff its edge function is empty. (Contributed by AV, 21-Oct-2020) (Proof shortened by AV, 8-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uhgriedg0edg0 | |- ( G e. UHGraph -> ( ( Edg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) | |
| 2 | 1 | uhgrfun | |- ( G e. UHGraph -> Fun ( iEdg ` G ) ) | 
| 3 | eqid | |- ( Edg ` G ) = ( Edg ` G ) | |
| 4 | 1 3 | edg0iedg0 | |- ( Fun ( iEdg ` G ) -> ( ( Edg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) | 
| 5 | 2 4 | syl | |- ( G e. UHGraph -> ( ( Edg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) |