Step |
Hyp |
Ref |
Expression |
1 |
|
uhgrissubgr.v |
|- V = ( Vtx ` S ) |
2 |
|
uhgrissubgr.a |
|- A = ( Vtx ` G ) |
3 |
|
uhgrissubgr.i |
|- I = ( iEdg ` S ) |
4 |
|
uhgrissubgr.b |
|- B = ( iEdg ` G ) |
5 |
|
eqid |
|- ( Edg ` S ) = ( Edg ` S ) |
6 |
1 2 3 4 5
|
subgrprop2 |
|- ( S SubGraph G -> ( V C_ A /\ I C_ B /\ ( Edg ` S ) C_ ~P V ) ) |
7 |
|
3simpa |
|- ( ( V C_ A /\ I C_ B /\ ( Edg ` S ) C_ ~P V ) -> ( V C_ A /\ I C_ B ) ) |
8 |
6 7
|
syl |
|- ( S SubGraph G -> ( V C_ A /\ I C_ B ) ) |
9 |
|
simprl |
|- ( ( ( G e. W /\ Fun B /\ S e. UHGraph ) /\ ( V C_ A /\ I C_ B ) ) -> V C_ A ) |
10 |
|
simp2 |
|- ( ( G e. W /\ Fun B /\ S e. UHGraph ) -> Fun B ) |
11 |
|
simpr |
|- ( ( V C_ A /\ I C_ B ) -> I C_ B ) |
12 |
|
funssres |
|- ( ( Fun B /\ I C_ B ) -> ( B |` dom I ) = I ) |
13 |
10 11 12
|
syl2an |
|- ( ( ( G e. W /\ Fun B /\ S e. UHGraph ) /\ ( V C_ A /\ I C_ B ) ) -> ( B |` dom I ) = I ) |
14 |
13
|
eqcomd |
|- ( ( ( G e. W /\ Fun B /\ S e. UHGraph ) /\ ( V C_ A /\ I C_ B ) ) -> I = ( B |` dom I ) ) |
15 |
|
edguhgr |
|- ( ( S e. UHGraph /\ e e. ( Edg ` S ) ) -> e e. ~P ( Vtx ` S ) ) |
16 |
15
|
ex |
|- ( S e. UHGraph -> ( e e. ( Edg ` S ) -> e e. ~P ( Vtx ` S ) ) ) |
17 |
1
|
pweqi |
|- ~P V = ~P ( Vtx ` S ) |
18 |
17
|
eleq2i |
|- ( e e. ~P V <-> e e. ~P ( Vtx ` S ) ) |
19 |
16 18
|
syl6ibr |
|- ( S e. UHGraph -> ( e e. ( Edg ` S ) -> e e. ~P V ) ) |
20 |
19
|
ssrdv |
|- ( S e. UHGraph -> ( Edg ` S ) C_ ~P V ) |
21 |
20
|
3ad2ant3 |
|- ( ( G e. W /\ Fun B /\ S e. UHGraph ) -> ( Edg ` S ) C_ ~P V ) |
22 |
21
|
adantr |
|- ( ( ( G e. W /\ Fun B /\ S e. UHGraph ) /\ ( V C_ A /\ I C_ B ) ) -> ( Edg ` S ) C_ ~P V ) |
23 |
1 2 3 4 5
|
issubgr |
|- ( ( G e. W /\ S e. UHGraph ) -> ( S SubGraph G <-> ( V C_ A /\ I = ( B |` dom I ) /\ ( Edg ` S ) C_ ~P V ) ) ) |
24 |
23
|
3adant2 |
|- ( ( G e. W /\ Fun B /\ S e. UHGraph ) -> ( S SubGraph G <-> ( V C_ A /\ I = ( B |` dom I ) /\ ( Edg ` S ) C_ ~P V ) ) ) |
25 |
24
|
adantr |
|- ( ( ( G e. W /\ Fun B /\ S e. UHGraph ) /\ ( V C_ A /\ I C_ B ) ) -> ( S SubGraph G <-> ( V C_ A /\ I = ( B |` dom I ) /\ ( Edg ` S ) C_ ~P V ) ) ) |
26 |
9 14 22 25
|
mpbir3and |
|- ( ( ( G e. W /\ Fun B /\ S e. UHGraph ) /\ ( V C_ A /\ I C_ B ) ) -> S SubGraph G ) |
27 |
26
|
ex |
|- ( ( G e. W /\ Fun B /\ S e. UHGraph ) -> ( ( V C_ A /\ I C_ B ) -> S SubGraph G ) ) |
28 |
8 27
|
impbid2 |
|- ( ( G e. W /\ Fun B /\ S e. UHGraph ) -> ( S SubGraph G <-> ( V C_ A /\ I C_ B ) ) ) |