Metamath Proof Explorer


Theorem uhgrspan

Description: A spanning subgraph S of a hypergraph G is a hypergraph. (Contributed by AV, 11-Oct-2020) (Proof shortened by AV, 18-Nov-2020)

Ref Expression
Hypotheses uhgrspan.v
|- V = ( Vtx ` G )
uhgrspan.e
|- E = ( iEdg ` G )
uhgrspan.s
|- ( ph -> S e. W )
uhgrspan.q
|- ( ph -> ( Vtx ` S ) = V )
uhgrspan.r
|- ( ph -> ( iEdg ` S ) = ( E |` A ) )
uhgrspan.g
|- ( ph -> G e. UHGraph )
Assertion uhgrspan
|- ( ph -> S e. UHGraph )

Proof

Step Hyp Ref Expression
1 uhgrspan.v
 |-  V = ( Vtx ` G )
2 uhgrspan.e
 |-  E = ( iEdg ` G )
3 uhgrspan.s
 |-  ( ph -> S e. W )
4 uhgrspan.q
 |-  ( ph -> ( Vtx ` S ) = V )
5 uhgrspan.r
 |-  ( ph -> ( iEdg ` S ) = ( E |` A ) )
6 uhgrspan.g
 |-  ( ph -> G e. UHGraph )
7 1 2 3 4 5 6 uhgrspansubgr
 |-  ( ph -> S SubGraph G )
8 subuhgr
 |-  ( ( G e. UHGraph /\ S SubGraph G ) -> S e. UHGraph )
9 6 7 8 syl2anc
 |-  ( ph -> S e. UHGraph )