Description: A spanning subgraph S of a hypergraph G is a hypergraph. (Contributed by AV, 11-Oct-2020) (Proof shortened by AV, 18-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | uhgrspan.v | |- V = ( Vtx ` G ) |
|
uhgrspan.e | |- E = ( iEdg ` G ) |
||
uhgrspan.s | |- ( ph -> S e. W ) |
||
uhgrspan.q | |- ( ph -> ( Vtx ` S ) = V ) |
||
uhgrspan.r | |- ( ph -> ( iEdg ` S ) = ( E |` A ) ) |
||
uhgrspan.g | |- ( ph -> G e. UHGraph ) |
||
Assertion | uhgrspan | |- ( ph -> S e. UHGraph ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uhgrspan.v | |- V = ( Vtx ` G ) |
|
2 | uhgrspan.e | |- E = ( iEdg ` G ) |
|
3 | uhgrspan.s | |- ( ph -> S e. W ) |
|
4 | uhgrspan.q | |- ( ph -> ( Vtx ` S ) = V ) |
|
5 | uhgrspan.r | |- ( ph -> ( iEdg ` S ) = ( E |` A ) ) |
|
6 | uhgrspan.g | |- ( ph -> G e. UHGraph ) |
|
7 | 1 2 3 4 5 6 | uhgrspansubgr | |- ( ph -> S SubGraph G ) |
8 | subuhgr | |- ( ( G e. UHGraph /\ S SubGraph G ) -> S e. UHGraph ) |
|
9 | 6 7 8 | syl2anc | |- ( ph -> S e. UHGraph ) |