Metamath Proof Explorer


Theorem uhgrspan1

Description: The induced subgraph S of a hypergraph G obtained by removing one vertex is actually a subgraph of G . A subgraph is called induced orspanned by a subset of vertices of a graph if it contains all edges of the original graph that join two vertices of the subgraph (see section I.1 in Bollobas p. 2 and section 1.1 in Diestel p. 4). (Contributed by AV, 19-Nov-2020)

Ref Expression
Hypotheses uhgrspan1.v
|- V = ( Vtx ` G )
uhgrspan1.i
|- I = ( iEdg ` G )
uhgrspan1.f
|- F = { i e. dom I | N e/ ( I ` i ) }
uhgrspan1.s
|- S = <. ( V \ { N } ) , ( I |` F ) >.
Assertion uhgrspan1
|- ( ( G e. UHGraph /\ N e. V ) -> S SubGraph G )

Proof

Step Hyp Ref Expression
1 uhgrspan1.v
 |-  V = ( Vtx ` G )
2 uhgrspan1.i
 |-  I = ( iEdg ` G )
3 uhgrspan1.f
 |-  F = { i e. dom I | N e/ ( I ` i ) }
4 uhgrspan1.s
 |-  S = <. ( V \ { N } ) , ( I |` F ) >.
5 difssd
 |-  ( ( G e. UHGraph /\ N e. V ) -> ( V \ { N } ) C_ V )
6 1 2 3 4 uhgrspan1lem3
 |-  ( iEdg ` S ) = ( I |` F )
7 resresdm
 |-  ( ( iEdg ` S ) = ( I |` F ) -> ( iEdg ` S ) = ( I |` dom ( iEdg ` S ) ) )
8 6 7 mp1i
 |-  ( ( G e. UHGraph /\ N e. V ) -> ( iEdg ` S ) = ( I |` dom ( iEdg ` S ) ) )
9 2 uhgrfun
 |-  ( G e. UHGraph -> Fun I )
10 fvelima
 |-  ( ( Fun I /\ c e. ( I " F ) ) -> E. j e. F ( I ` j ) = c )
11 10 ex
 |-  ( Fun I -> ( c e. ( I " F ) -> E. j e. F ( I ` j ) = c ) )
12 9 11 syl
 |-  ( G e. UHGraph -> ( c e. ( I " F ) -> E. j e. F ( I ` j ) = c ) )
13 12 adantr
 |-  ( ( G e. UHGraph /\ N e. V ) -> ( c e. ( I " F ) -> E. j e. F ( I ` j ) = c ) )
14 eqidd
 |-  ( i = j -> N = N )
15 fveq2
 |-  ( i = j -> ( I ` i ) = ( I ` j ) )
16 14 15 neleq12d
 |-  ( i = j -> ( N e/ ( I ` i ) <-> N e/ ( I ` j ) ) )
17 16 3 elrab2
 |-  ( j e. F <-> ( j e. dom I /\ N e/ ( I ` j ) ) )
18 fvexd
 |-  ( ( ( G e. UHGraph /\ N e. V ) /\ ( j e. dom I /\ N e/ ( I ` j ) ) ) -> ( I ` j ) e. _V )
19 1 2 uhgrss
 |-  ( ( G e. UHGraph /\ j e. dom I ) -> ( I ` j ) C_ V )
20 19 ad2ant2r
 |-  ( ( ( G e. UHGraph /\ N e. V ) /\ ( j e. dom I /\ N e/ ( I ` j ) ) ) -> ( I ` j ) C_ V )
21 simprr
 |-  ( ( ( G e. UHGraph /\ N e. V ) /\ ( j e. dom I /\ N e/ ( I ` j ) ) ) -> N e/ ( I ` j ) )
22 elpwdifsn
 |-  ( ( ( I ` j ) e. _V /\ ( I ` j ) C_ V /\ N e/ ( I ` j ) ) -> ( I ` j ) e. ~P ( V \ { N } ) )
23 18 20 21 22 syl3anc
 |-  ( ( ( G e. UHGraph /\ N e. V ) /\ ( j e. dom I /\ N e/ ( I ` j ) ) ) -> ( I ` j ) e. ~P ( V \ { N } ) )
24 eleq1
 |-  ( c = ( I ` j ) -> ( c e. ~P ( V \ { N } ) <-> ( I ` j ) e. ~P ( V \ { N } ) ) )
25 24 eqcoms
 |-  ( ( I ` j ) = c -> ( c e. ~P ( V \ { N } ) <-> ( I ` j ) e. ~P ( V \ { N } ) ) )
26 23 25 syl5ibrcom
 |-  ( ( ( G e. UHGraph /\ N e. V ) /\ ( j e. dom I /\ N e/ ( I ` j ) ) ) -> ( ( I ` j ) = c -> c e. ~P ( V \ { N } ) ) )
27 26 ex
 |-  ( ( G e. UHGraph /\ N e. V ) -> ( ( j e. dom I /\ N e/ ( I ` j ) ) -> ( ( I ` j ) = c -> c e. ~P ( V \ { N } ) ) ) )
28 17 27 syl5bi
 |-  ( ( G e. UHGraph /\ N e. V ) -> ( j e. F -> ( ( I ` j ) = c -> c e. ~P ( V \ { N } ) ) ) )
29 28 rexlimdv
 |-  ( ( G e. UHGraph /\ N e. V ) -> ( E. j e. F ( I ` j ) = c -> c e. ~P ( V \ { N } ) ) )
30 13 29 syld
 |-  ( ( G e. UHGraph /\ N e. V ) -> ( c e. ( I " F ) -> c e. ~P ( V \ { N } ) ) )
31 30 ssrdv
 |-  ( ( G e. UHGraph /\ N e. V ) -> ( I " F ) C_ ~P ( V \ { N } ) )
32 opex
 |-  <. ( V \ { N } ) , ( I |` F ) >. e. _V
33 4 32 eqeltri
 |-  S e. _V
34 33 a1i
 |-  ( N e. V -> S e. _V )
35 1 2 3 4 uhgrspan1lem2
 |-  ( Vtx ` S ) = ( V \ { N } )
36 35 eqcomi
 |-  ( V \ { N } ) = ( Vtx ` S )
37 eqid
 |-  ( iEdg ` S ) = ( iEdg ` S )
38 6 rneqi
 |-  ran ( iEdg ` S ) = ran ( I |` F )
39 edgval
 |-  ( Edg ` S ) = ran ( iEdg ` S )
40 df-ima
 |-  ( I " F ) = ran ( I |` F )
41 38 39 40 3eqtr4ri
 |-  ( I " F ) = ( Edg ` S )
42 36 1 37 2 41 issubgr
 |-  ( ( G e. UHGraph /\ S e. _V ) -> ( S SubGraph G <-> ( ( V \ { N } ) C_ V /\ ( iEdg ` S ) = ( I |` dom ( iEdg ` S ) ) /\ ( I " F ) C_ ~P ( V \ { N } ) ) ) )
43 34 42 sylan2
 |-  ( ( G e. UHGraph /\ N e. V ) -> ( S SubGraph G <-> ( ( V \ { N } ) C_ V /\ ( iEdg ` S ) = ( I |` dom ( iEdg ` S ) ) /\ ( I " F ) C_ ~P ( V \ { N } ) ) ) )
44 5 8 31 43 mpbir3and
 |-  ( ( G e. UHGraph /\ N e. V ) -> S SubGraph G )