Step |
Hyp |
Ref |
Expression |
1 |
|
uhgrspan1.v |
|- V = ( Vtx ` G ) |
2 |
|
uhgrspan1.i |
|- I = ( iEdg ` G ) |
3 |
|
uhgrspan1.f |
|- F = { i e. dom I | N e/ ( I ` i ) } |
4 |
|
uhgrspan1.s |
|- S = <. ( V \ { N } ) , ( I |` F ) >. |
5 |
|
difssd |
|- ( ( G e. UHGraph /\ N e. V ) -> ( V \ { N } ) C_ V ) |
6 |
1 2 3 4
|
uhgrspan1lem3 |
|- ( iEdg ` S ) = ( I |` F ) |
7 |
|
resresdm |
|- ( ( iEdg ` S ) = ( I |` F ) -> ( iEdg ` S ) = ( I |` dom ( iEdg ` S ) ) ) |
8 |
6 7
|
mp1i |
|- ( ( G e. UHGraph /\ N e. V ) -> ( iEdg ` S ) = ( I |` dom ( iEdg ` S ) ) ) |
9 |
2
|
uhgrfun |
|- ( G e. UHGraph -> Fun I ) |
10 |
|
fvelima |
|- ( ( Fun I /\ c e. ( I " F ) ) -> E. j e. F ( I ` j ) = c ) |
11 |
10
|
ex |
|- ( Fun I -> ( c e. ( I " F ) -> E. j e. F ( I ` j ) = c ) ) |
12 |
9 11
|
syl |
|- ( G e. UHGraph -> ( c e. ( I " F ) -> E. j e. F ( I ` j ) = c ) ) |
13 |
12
|
adantr |
|- ( ( G e. UHGraph /\ N e. V ) -> ( c e. ( I " F ) -> E. j e. F ( I ` j ) = c ) ) |
14 |
|
eqidd |
|- ( i = j -> N = N ) |
15 |
|
fveq2 |
|- ( i = j -> ( I ` i ) = ( I ` j ) ) |
16 |
14 15
|
neleq12d |
|- ( i = j -> ( N e/ ( I ` i ) <-> N e/ ( I ` j ) ) ) |
17 |
16 3
|
elrab2 |
|- ( j e. F <-> ( j e. dom I /\ N e/ ( I ` j ) ) ) |
18 |
|
fvexd |
|- ( ( ( G e. UHGraph /\ N e. V ) /\ ( j e. dom I /\ N e/ ( I ` j ) ) ) -> ( I ` j ) e. _V ) |
19 |
1 2
|
uhgrss |
|- ( ( G e. UHGraph /\ j e. dom I ) -> ( I ` j ) C_ V ) |
20 |
19
|
ad2ant2r |
|- ( ( ( G e. UHGraph /\ N e. V ) /\ ( j e. dom I /\ N e/ ( I ` j ) ) ) -> ( I ` j ) C_ V ) |
21 |
|
simprr |
|- ( ( ( G e. UHGraph /\ N e. V ) /\ ( j e. dom I /\ N e/ ( I ` j ) ) ) -> N e/ ( I ` j ) ) |
22 |
|
elpwdifsn |
|- ( ( ( I ` j ) e. _V /\ ( I ` j ) C_ V /\ N e/ ( I ` j ) ) -> ( I ` j ) e. ~P ( V \ { N } ) ) |
23 |
18 20 21 22
|
syl3anc |
|- ( ( ( G e. UHGraph /\ N e. V ) /\ ( j e. dom I /\ N e/ ( I ` j ) ) ) -> ( I ` j ) e. ~P ( V \ { N } ) ) |
24 |
|
eleq1 |
|- ( c = ( I ` j ) -> ( c e. ~P ( V \ { N } ) <-> ( I ` j ) e. ~P ( V \ { N } ) ) ) |
25 |
24
|
eqcoms |
|- ( ( I ` j ) = c -> ( c e. ~P ( V \ { N } ) <-> ( I ` j ) e. ~P ( V \ { N } ) ) ) |
26 |
23 25
|
syl5ibrcom |
|- ( ( ( G e. UHGraph /\ N e. V ) /\ ( j e. dom I /\ N e/ ( I ` j ) ) ) -> ( ( I ` j ) = c -> c e. ~P ( V \ { N } ) ) ) |
27 |
26
|
ex |
|- ( ( G e. UHGraph /\ N e. V ) -> ( ( j e. dom I /\ N e/ ( I ` j ) ) -> ( ( I ` j ) = c -> c e. ~P ( V \ { N } ) ) ) ) |
28 |
17 27
|
syl5bi |
|- ( ( G e. UHGraph /\ N e. V ) -> ( j e. F -> ( ( I ` j ) = c -> c e. ~P ( V \ { N } ) ) ) ) |
29 |
28
|
rexlimdv |
|- ( ( G e. UHGraph /\ N e. V ) -> ( E. j e. F ( I ` j ) = c -> c e. ~P ( V \ { N } ) ) ) |
30 |
13 29
|
syld |
|- ( ( G e. UHGraph /\ N e. V ) -> ( c e. ( I " F ) -> c e. ~P ( V \ { N } ) ) ) |
31 |
30
|
ssrdv |
|- ( ( G e. UHGraph /\ N e. V ) -> ( I " F ) C_ ~P ( V \ { N } ) ) |
32 |
|
opex |
|- <. ( V \ { N } ) , ( I |` F ) >. e. _V |
33 |
4 32
|
eqeltri |
|- S e. _V |
34 |
33
|
a1i |
|- ( N e. V -> S e. _V ) |
35 |
1 2 3 4
|
uhgrspan1lem2 |
|- ( Vtx ` S ) = ( V \ { N } ) |
36 |
35
|
eqcomi |
|- ( V \ { N } ) = ( Vtx ` S ) |
37 |
|
eqid |
|- ( iEdg ` S ) = ( iEdg ` S ) |
38 |
6
|
rneqi |
|- ran ( iEdg ` S ) = ran ( I |` F ) |
39 |
|
edgval |
|- ( Edg ` S ) = ran ( iEdg ` S ) |
40 |
|
df-ima |
|- ( I " F ) = ran ( I |` F ) |
41 |
38 39 40
|
3eqtr4ri |
|- ( I " F ) = ( Edg ` S ) |
42 |
36 1 37 2 41
|
issubgr |
|- ( ( G e. UHGraph /\ S e. _V ) -> ( S SubGraph G <-> ( ( V \ { N } ) C_ V /\ ( iEdg ` S ) = ( I |` dom ( iEdg ` S ) ) /\ ( I " F ) C_ ~P ( V \ { N } ) ) ) ) |
43 |
34 42
|
sylan2 |
|- ( ( G e. UHGraph /\ N e. V ) -> ( S SubGraph G <-> ( ( V \ { N } ) C_ V /\ ( iEdg ` S ) = ( I |` dom ( iEdg ` S ) ) /\ ( I " F ) C_ ~P ( V \ { N } ) ) ) ) |
44 |
5 8 31 43
|
mpbir3and |
|- ( ( G e. UHGraph /\ N e. V ) -> S SubGraph G ) |