Metamath Proof Explorer


Theorem uhgrspan1lem2

Description: Lemma 2 for uhgrspan1 . (Contributed by AV, 19-Nov-2020)

Ref Expression
Hypotheses uhgrspan1.v
|- V = ( Vtx ` G )
uhgrspan1.i
|- I = ( iEdg ` G )
uhgrspan1.f
|- F = { i e. dom I | N e/ ( I ` i ) }
uhgrspan1.s
|- S = <. ( V \ { N } ) , ( I |` F ) >.
Assertion uhgrspan1lem2
|- ( Vtx ` S ) = ( V \ { N } )

Proof

Step Hyp Ref Expression
1 uhgrspan1.v
 |-  V = ( Vtx ` G )
2 uhgrspan1.i
 |-  I = ( iEdg ` G )
3 uhgrspan1.f
 |-  F = { i e. dom I | N e/ ( I ` i ) }
4 uhgrspan1.s
 |-  S = <. ( V \ { N } ) , ( I |` F ) >.
5 4 fveq2i
 |-  ( Vtx ` S ) = ( Vtx ` <. ( V \ { N } ) , ( I |` F ) >. )
6 1 2 3 uhgrspan1lem1
 |-  ( ( V \ { N } ) e. _V /\ ( I |` F ) e. _V )
7 opvtxfv
 |-  ( ( ( V \ { N } ) e. _V /\ ( I |` F ) e. _V ) -> ( Vtx ` <. ( V \ { N } ) , ( I |` F ) >. ) = ( V \ { N } ) )
8 6 7 ax-mp
 |-  ( Vtx ` <. ( V \ { N } ) , ( I |` F ) >. ) = ( V \ { N } )
9 5 8 eqtri
 |-  ( Vtx ` S ) = ( V \ { N } )