Step |
Hyp |
Ref |
Expression |
1 |
|
uhgrspanop.v |
|- V = ( Vtx ` G ) |
2 |
|
uhgrspanop.e |
|- E = ( iEdg ` G ) |
3 |
|
opex |
|- <. V , ( E |` A ) >. e. _V |
4 |
3
|
a1i |
|- ( G e. UHGraph -> <. V , ( E |` A ) >. e. _V ) |
5 |
1
|
fvexi |
|- V e. _V |
6 |
2
|
fvexi |
|- E e. _V |
7 |
6
|
resex |
|- ( E |` A ) e. _V |
8 |
5 7
|
opvtxfvi |
|- ( Vtx ` <. V , ( E |` A ) >. ) = V |
9 |
8
|
a1i |
|- ( G e. UHGraph -> ( Vtx ` <. V , ( E |` A ) >. ) = V ) |
10 |
5 7
|
opiedgfvi |
|- ( iEdg ` <. V , ( E |` A ) >. ) = ( E |` A ) |
11 |
10
|
a1i |
|- ( G e. UHGraph -> ( iEdg ` <. V , ( E |` A ) >. ) = ( E |` A ) ) |
12 |
|
id |
|- ( G e. UHGraph -> G e. UHGraph ) |
13 |
1 2 4 9 11 12
|
uhgrspan |
|- ( G e. UHGraph -> <. V , ( E |` A ) >. e. UHGraph ) |