Metamath Proof Explorer


Theorem uhgrss

Description: An edge is a subset of vertices. (Contributed by Alexander van der Vekens, 26-Dec-2017) (Revised by AV, 18-Jan-2020)

Ref Expression
Hypotheses uhgrf.v
|- V = ( Vtx ` G )
uhgrf.e
|- E = ( iEdg ` G )
Assertion uhgrss
|- ( ( G e. UHGraph /\ F e. dom E ) -> ( E ` F ) C_ V )

Proof

Step Hyp Ref Expression
1 uhgrf.v
 |-  V = ( Vtx ` G )
2 uhgrf.e
 |-  E = ( iEdg ` G )
3 1 2 uhgrf
 |-  ( G e. UHGraph -> E : dom E --> ( ~P V \ { (/) } ) )
4 3 ffvelrnda
 |-  ( ( G e. UHGraph /\ F e. dom E ) -> ( E ` F ) e. ( ~P V \ { (/) } ) )
5 4 eldifad
 |-  ( ( G e. UHGraph /\ F e. dom E ) -> ( E ` F ) e. ~P V )
6 5 elpwid
 |-  ( ( G e. UHGraph /\ F e. dom E ) -> ( E ` F ) C_ V )