Step |
Hyp |
Ref |
Expression |
1 |
|
ssid |
|- ( Vtx ` G ) C_ ( Vtx ` G ) |
2 |
|
ssid |
|- ( iEdg ` G ) C_ ( iEdg ` G ) |
3 |
1 2
|
pm3.2i |
|- ( ( Vtx ` G ) C_ ( Vtx ` G ) /\ ( iEdg ` G ) C_ ( iEdg ` G ) ) |
4 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
5 |
4
|
uhgrfun |
|- ( G e. UHGraph -> Fun ( iEdg ` G ) ) |
6 |
|
id |
|- ( G e. UHGraph -> G e. UHGraph ) |
7 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
8 |
7 7 4 4
|
uhgrissubgr |
|- ( ( G e. UHGraph /\ Fun ( iEdg ` G ) /\ G e. UHGraph ) -> ( G SubGraph G <-> ( ( Vtx ` G ) C_ ( Vtx ` G ) /\ ( iEdg ` G ) C_ ( iEdg ` G ) ) ) ) |
9 |
5 6 8
|
mpd3an23 |
|- ( G e. UHGraph -> ( G SubGraph G <-> ( ( Vtx ` G ) C_ ( Vtx ` G ) /\ ( iEdg ` G ) C_ ( iEdg ` G ) ) ) ) |
10 |
3 9
|
mpbiri |
|- ( G e. UHGraph -> G SubGraph G ) |