| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uhgrun.g |  |-  ( ph -> G e. UHGraph ) | 
						
							| 2 |  | uhgrun.h |  |-  ( ph -> H e. UHGraph ) | 
						
							| 3 |  | uhgrun.e |  |-  E = ( iEdg ` G ) | 
						
							| 4 |  | uhgrun.f |  |-  F = ( iEdg ` H ) | 
						
							| 5 |  | uhgrun.vg |  |-  V = ( Vtx ` G ) | 
						
							| 6 |  | uhgrun.vh |  |-  ( ph -> ( Vtx ` H ) = V ) | 
						
							| 7 |  | uhgrun.i |  |-  ( ph -> ( dom E i^i dom F ) = (/) ) | 
						
							| 8 |  | uhgrun.u |  |-  ( ph -> U e. W ) | 
						
							| 9 |  | uhgrun.v |  |-  ( ph -> ( Vtx ` U ) = V ) | 
						
							| 10 |  | uhgrun.un |  |-  ( ph -> ( iEdg ` U ) = ( E u. F ) ) | 
						
							| 11 | 5 3 | uhgrf |  |-  ( G e. UHGraph -> E : dom E --> ( ~P V \ { (/) } ) ) | 
						
							| 12 | 1 11 | syl |  |-  ( ph -> E : dom E --> ( ~P V \ { (/) } ) ) | 
						
							| 13 |  | eqid |  |-  ( Vtx ` H ) = ( Vtx ` H ) | 
						
							| 14 | 13 4 | uhgrf |  |-  ( H e. UHGraph -> F : dom F --> ( ~P ( Vtx ` H ) \ { (/) } ) ) | 
						
							| 15 | 2 14 | syl |  |-  ( ph -> F : dom F --> ( ~P ( Vtx ` H ) \ { (/) } ) ) | 
						
							| 16 | 6 | eqcomd |  |-  ( ph -> V = ( Vtx ` H ) ) | 
						
							| 17 | 16 | pweqd |  |-  ( ph -> ~P V = ~P ( Vtx ` H ) ) | 
						
							| 18 | 17 | difeq1d |  |-  ( ph -> ( ~P V \ { (/) } ) = ( ~P ( Vtx ` H ) \ { (/) } ) ) | 
						
							| 19 | 18 | feq3d |  |-  ( ph -> ( F : dom F --> ( ~P V \ { (/) } ) <-> F : dom F --> ( ~P ( Vtx ` H ) \ { (/) } ) ) ) | 
						
							| 20 | 15 19 | mpbird |  |-  ( ph -> F : dom F --> ( ~P V \ { (/) } ) ) | 
						
							| 21 | 12 20 7 | fun2d |  |-  ( ph -> ( E u. F ) : ( dom E u. dom F ) --> ( ~P V \ { (/) } ) ) | 
						
							| 22 | 10 | dmeqd |  |-  ( ph -> dom ( iEdg ` U ) = dom ( E u. F ) ) | 
						
							| 23 |  | dmun |  |-  dom ( E u. F ) = ( dom E u. dom F ) | 
						
							| 24 | 22 23 | eqtrdi |  |-  ( ph -> dom ( iEdg ` U ) = ( dom E u. dom F ) ) | 
						
							| 25 | 9 | pweqd |  |-  ( ph -> ~P ( Vtx ` U ) = ~P V ) | 
						
							| 26 | 25 | difeq1d |  |-  ( ph -> ( ~P ( Vtx ` U ) \ { (/) } ) = ( ~P V \ { (/) } ) ) | 
						
							| 27 | 10 24 26 | feq123d |  |-  ( ph -> ( ( iEdg ` U ) : dom ( iEdg ` U ) --> ( ~P ( Vtx ` U ) \ { (/) } ) <-> ( E u. F ) : ( dom E u. dom F ) --> ( ~P V \ { (/) } ) ) ) | 
						
							| 28 | 21 27 | mpbird |  |-  ( ph -> ( iEdg ` U ) : dom ( iEdg ` U ) --> ( ~P ( Vtx ` U ) \ { (/) } ) ) | 
						
							| 29 |  | eqid |  |-  ( Vtx ` U ) = ( Vtx ` U ) | 
						
							| 30 |  | eqid |  |-  ( iEdg ` U ) = ( iEdg ` U ) | 
						
							| 31 | 29 30 | isuhgr |  |-  ( U e. W -> ( U e. UHGraph <-> ( iEdg ` U ) : dom ( iEdg ` U ) --> ( ~P ( Vtx ` U ) \ { (/) } ) ) ) | 
						
							| 32 | 8 31 | syl |  |-  ( ph -> ( U e. UHGraph <-> ( iEdg ` U ) : dom ( iEdg ` U ) --> ( ~P ( Vtx ` U ) \ { (/) } ) ) ) | 
						
							| 33 | 28 32 | mpbird |  |-  ( ph -> U e. UHGraph ) |