| Step | Hyp | Ref | Expression | 
						
							| 1 |  | uhgrvtxedgiedgb.i |  |-  I = ( iEdg ` G ) | 
						
							| 2 |  | uhgrvtxedgiedgb.e |  |-  E = ( Edg ` G ) | 
						
							| 3 |  | edgval |  |-  ( Edg ` G ) = ran ( iEdg ` G ) | 
						
							| 4 | 3 | a1i |  |-  ( G e. UHGraph -> ( Edg ` G ) = ran ( iEdg ` G ) ) | 
						
							| 5 | 1 | rneqi |  |-  ran I = ran ( iEdg ` G ) | 
						
							| 6 | 4 2 5 | 3eqtr4g |  |-  ( G e. UHGraph -> E = ran I ) | 
						
							| 7 | 6 | rexeqdv |  |-  ( G e. UHGraph -> ( E. e e. E U e. e <-> E. e e. ran I U e. e ) ) | 
						
							| 8 | 1 | uhgrfun |  |-  ( G e. UHGraph -> Fun I ) | 
						
							| 9 | 8 | funfnd |  |-  ( G e. UHGraph -> I Fn dom I ) | 
						
							| 10 |  | eleq2 |  |-  ( e = ( I ` i ) -> ( U e. e <-> U e. ( I ` i ) ) ) | 
						
							| 11 | 10 | rexrn |  |-  ( I Fn dom I -> ( E. e e. ran I U e. e <-> E. i e. dom I U e. ( I ` i ) ) ) | 
						
							| 12 | 9 11 | syl |  |-  ( G e. UHGraph -> ( E. e e. ran I U e. e <-> E. i e. dom I U e. ( I ` i ) ) ) | 
						
							| 13 | 7 12 | bitrd |  |-  ( G e. UHGraph -> ( E. e e. E U e. e <-> E. i e. dom I U e. ( I ` i ) ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( G e. UHGraph /\ U e. V ) -> ( E. e e. E U e. e <-> E. i e. dom I U e. ( I ` i ) ) ) | 
						
							| 15 | 14 | bicomd |  |-  ( ( G e. UHGraph /\ U e. V ) -> ( E. i e. dom I U e. ( I ` i ) <-> E. e e. E U e. e ) ) |