Step |
Hyp |
Ref |
Expression |
1 |
|
uhgrvtxedgiedgb.i |
|- I = ( iEdg ` G ) |
2 |
|
uhgrvtxedgiedgb.e |
|- E = ( Edg ` G ) |
3 |
|
edgval |
|- ( Edg ` G ) = ran ( iEdg ` G ) |
4 |
3
|
a1i |
|- ( G e. UHGraph -> ( Edg ` G ) = ran ( iEdg ` G ) ) |
5 |
1
|
rneqi |
|- ran I = ran ( iEdg ` G ) |
6 |
4 2 5
|
3eqtr4g |
|- ( G e. UHGraph -> E = ran I ) |
7 |
6
|
rexeqdv |
|- ( G e. UHGraph -> ( E. e e. E U e. e <-> E. e e. ran I U e. e ) ) |
8 |
1
|
uhgrfun |
|- ( G e. UHGraph -> Fun I ) |
9 |
8
|
funfnd |
|- ( G e. UHGraph -> I Fn dom I ) |
10 |
|
eleq2 |
|- ( e = ( I ` i ) -> ( U e. e <-> U e. ( I ` i ) ) ) |
11 |
10
|
rexrn |
|- ( I Fn dom I -> ( E. e e. ran I U e. e <-> E. i e. dom I U e. ( I ` i ) ) ) |
12 |
9 11
|
syl |
|- ( G e. UHGraph -> ( E. e e. ran I U e. e <-> E. i e. dom I U e. ( I ` i ) ) ) |
13 |
7 12
|
bitrd |
|- ( G e. UHGraph -> ( E. e e. E U e. e <-> E. i e. dom I U e. ( I ` i ) ) ) |
14 |
13
|
adantr |
|- ( ( G e. UHGraph /\ U e. V ) -> ( E. e e. E U e. e <-> E. i e. dom I U e. ( I ` i ) ) ) |
15 |
14
|
bicomd |
|- ( ( G e. UHGraph /\ U e. V ) -> ( E. i e. dom I U e. ( I ` i ) <-> E. e e. E U e. e ) ) |