Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
2 |
1
|
wlkp |
|- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
3 |
|
oveq2 |
|- ( ( # ` F ) = 1 -> ( 0 ... ( # ` F ) ) = ( 0 ... 1 ) ) |
4 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
5 |
4
|
oveq2i |
|- ( 0 ... 1 ) = ( 0 ... ( 0 + 1 ) ) |
6 |
|
0z |
|- 0 e. ZZ |
7 |
|
fzpr |
|- ( 0 e. ZZ -> ( 0 ... ( 0 + 1 ) ) = { 0 , ( 0 + 1 ) } ) |
8 |
6 7
|
ax-mp |
|- ( 0 ... ( 0 + 1 ) ) = { 0 , ( 0 + 1 ) } |
9 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
10 |
9
|
preq2i |
|- { 0 , ( 0 + 1 ) } = { 0 , 1 } |
11 |
5 8 10
|
3eqtri |
|- ( 0 ... 1 ) = { 0 , 1 } |
12 |
3 11
|
eqtrdi |
|- ( ( # ` F ) = 1 -> ( 0 ... ( # ` F ) ) = { 0 , 1 } ) |
13 |
12
|
feq2d |
|- ( ( # ` F ) = 1 -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) <-> P : { 0 , 1 } --> ( Vtx ` G ) ) ) |
14 |
13
|
adantr |
|- ( ( ( # ` F ) = 1 /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) <-> P : { 0 , 1 } --> ( Vtx ` G ) ) ) |
15 |
|
simpl |
|- ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( P ` 0 ) = A ) |
16 |
|
simpr |
|- ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( P ` ( # ` F ) ) = B ) |
17 |
15 16
|
neeq12d |
|- ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( ( P ` 0 ) =/= ( P ` ( # ` F ) ) <-> A =/= B ) ) |
18 |
17
|
bicomd |
|- ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( A =/= B <-> ( P ` 0 ) =/= ( P ` ( # ` F ) ) ) ) |
19 |
|
fveq2 |
|- ( ( # ` F ) = 1 -> ( P ` ( # ` F ) ) = ( P ` 1 ) ) |
20 |
19
|
neeq2d |
|- ( ( # ` F ) = 1 -> ( ( P ` 0 ) =/= ( P ` ( # ` F ) ) <-> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
21 |
18 20
|
sylan9bbr |
|- ( ( ( # ` F ) = 1 /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( A =/= B <-> ( P ` 0 ) =/= ( P ` 1 ) ) ) |
22 |
14 21
|
anbi12d |
|- ( ( ( # ` F ) = 1 /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A =/= B ) <-> ( P : { 0 , 1 } --> ( Vtx ` G ) /\ ( P ` 0 ) =/= ( P ` 1 ) ) ) ) |
23 |
|
1z |
|- 1 e. ZZ |
24 |
|
fpr2g |
|- ( ( 0 e. ZZ /\ 1 e. ZZ ) -> ( P : { 0 , 1 } --> ( Vtx ` G ) <-> ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) /\ P = { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } ) ) ) |
25 |
6 23 24
|
mp2an |
|- ( P : { 0 , 1 } --> ( Vtx ` G ) <-> ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) /\ P = { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } ) ) |
26 |
|
funcnvs2 |
|- ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) /\ ( P ` 0 ) =/= ( P ` 1 ) ) -> Fun `' <" ( P ` 0 ) ( P ` 1 ) "> ) |
27 |
26
|
3expa |
|- ( ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) ) /\ ( P ` 0 ) =/= ( P ` 1 ) ) -> Fun `' <" ( P ` 0 ) ( P ` 1 ) "> ) |
28 |
27
|
adantl |
|- ( ( P = { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } /\ ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) ) /\ ( P ` 0 ) =/= ( P ` 1 ) ) ) -> Fun `' <" ( P ` 0 ) ( P ` 1 ) "> ) |
29 |
|
simpl |
|- ( ( P = { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } /\ ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) ) /\ ( P ` 0 ) =/= ( P ` 1 ) ) ) -> P = { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } ) |
30 |
|
s2prop |
|- ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) ) -> <" ( P ` 0 ) ( P ` 1 ) "> = { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } ) |
31 |
30
|
eqcomd |
|- ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) ) -> { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } = <" ( P ` 0 ) ( P ` 1 ) "> ) |
32 |
31
|
adantr |
|- ( ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) ) /\ ( P ` 0 ) =/= ( P ` 1 ) ) -> { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } = <" ( P ` 0 ) ( P ` 1 ) "> ) |
33 |
32
|
adantl |
|- ( ( P = { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } /\ ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) ) /\ ( P ` 0 ) =/= ( P ` 1 ) ) ) -> { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } = <" ( P ` 0 ) ( P ` 1 ) "> ) |
34 |
29 33
|
eqtrd |
|- ( ( P = { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } /\ ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) ) /\ ( P ` 0 ) =/= ( P ` 1 ) ) ) -> P = <" ( P ` 0 ) ( P ` 1 ) "> ) |
35 |
34
|
cnveqd |
|- ( ( P = { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } /\ ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) ) /\ ( P ` 0 ) =/= ( P ` 1 ) ) ) -> `' P = `' <" ( P ` 0 ) ( P ` 1 ) "> ) |
36 |
35
|
funeqd |
|- ( ( P = { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } /\ ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) ) /\ ( P ` 0 ) =/= ( P ` 1 ) ) ) -> ( Fun `' P <-> Fun `' <" ( P ` 0 ) ( P ` 1 ) "> ) ) |
37 |
28 36
|
mpbird |
|- ( ( P = { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } /\ ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) ) /\ ( P ` 0 ) =/= ( P ` 1 ) ) ) -> Fun `' P ) |
38 |
37
|
exp32 |
|- ( P = { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } -> ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) ) -> ( ( P ` 0 ) =/= ( P ` 1 ) -> Fun `' P ) ) ) |
39 |
38
|
impcom |
|- ( ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) ) /\ P = { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } ) -> ( ( P ` 0 ) =/= ( P ` 1 ) -> Fun `' P ) ) |
40 |
39
|
3impa |
|- ( ( ( P ` 0 ) e. ( Vtx ` G ) /\ ( P ` 1 ) e. ( Vtx ` G ) /\ P = { <. 0 , ( P ` 0 ) >. , <. 1 , ( P ` 1 ) >. } ) -> ( ( P ` 0 ) =/= ( P ` 1 ) -> Fun `' P ) ) |
41 |
25 40
|
sylbi |
|- ( P : { 0 , 1 } --> ( Vtx ` G ) -> ( ( P ` 0 ) =/= ( P ` 1 ) -> Fun `' P ) ) |
42 |
41
|
imp |
|- ( ( P : { 0 , 1 } --> ( Vtx ` G ) /\ ( P ` 0 ) =/= ( P ` 1 ) ) -> Fun `' P ) |
43 |
22 42
|
syl6bi |
|- ( ( ( # ` F ) = 1 /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A =/= B ) -> Fun `' P ) ) |
44 |
43
|
expd |
|- ( ( ( # ` F ) = 1 /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( A =/= B -> Fun `' P ) ) ) |
45 |
44
|
com12 |
|- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( ( # ` F ) = 1 /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> ( A =/= B -> Fun `' P ) ) ) |
46 |
45
|
expd |
|- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( # ` F ) = 1 -> ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> ( A =/= B -> Fun `' P ) ) ) ) |
47 |
46
|
com34 |
|- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( # ` F ) = 1 -> ( A =/= B -> ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> Fun `' P ) ) ) ) |
48 |
47
|
impd |
|- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> ( ( ( # ` F ) = 1 /\ A =/= B ) -> ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> Fun `' P ) ) ) |
49 |
2 48
|
syl |
|- ( F ( Walks ` G ) P -> ( ( ( # ` F ) = 1 /\ A =/= B ) -> ( ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) -> Fun `' P ) ) ) |
50 |
49
|
3imp |
|- ( ( F ( Walks ` G ) P /\ ( ( # ` F ) = 1 /\ A =/= B ) /\ ( ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = B ) ) -> Fun `' P ) |