| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ulm0.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 2 |  | ulm0.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 3 |  | ulm0.f |  |-  ( ph -> F : Z --> ( CC ^m S ) ) | 
						
							| 4 |  | ulm0.g |  |-  ( ph -> G : S --> CC ) | 
						
							| 5 |  | uzid |  |-  ( M e. ZZ -> M e. ( ZZ>= ` M ) ) | 
						
							| 6 | 2 5 | syl |  |-  ( ph -> M e. ( ZZ>= ` M ) ) | 
						
							| 7 | 6 1 | eleqtrrdi |  |-  ( ph -> M e. Z ) | 
						
							| 8 | 7 | ne0d |  |-  ( ph -> Z =/= (/) ) | 
						
							| 9 |  | ral0 |  |-  A. z e. (/) ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x | 
						
							| 10 |  | simpr |  |-  ( ( ph /\ S = (/) ) -> S = (/) ) | 
						
							| 11 | 10 | raleqdv |  |-  ( ( ph /\ S = (/) ) -> ( A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x <-> A. z e. (/) ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x ) ) | 
						
							| 12 | 9 11 | mpbiri |  |-  ( ( ph /\ S = (/) ) -> A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x ) | 
						
							| 13 | 12 | ralrimivw |  |-  ( ( ph /\ S = (/) ) -> A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x ) | 
						
							| 14 | 13 | ralrimivw |  |-  ( ( ph /\ S = (/) ) -> A. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x ) | 
						
							| 15 |  | r19.2z |  |-  ( ( Z =/= (/) /\ A. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x ) -> E. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x ) | 
						
							| 16 | 8 14 15 | syl2an2r |  |-  ( ( ph /\ S = (/) ) -> E. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x ) | 
						
							| 17 | 16 | ralrimivw |  |-  ( ( ph /\ S = (/) ) -> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x ) | 
						
							| 18 | 2 | adantr |  |-  ( ( ph /\ S = (/) ) -> M e. ZZ ) | 
						
							| 19 | 3 | adantr |  |-  ( ( ph /\ S = (/) ) -> F : Z --> ( CC ^m S ) ) | 
						
							| 20 |  | eqidd |  |-  ( ( ( ph /\ S = (/) ) /\ ( k e. Z /\ z e. S ) ) -> ( ( F ` k ) ` z ) = ( ( F ` k ) ` z ) ) | 
						
							| 21 |  | eqidd |  |-  ( ( ( ph /\ S = (/) ) /\ z e. S ) -> ( G ` z ) = ( G ` z ) ) | 
						
							| 22 | 4 | adantr |  |-  ( ( ph /\ S = (/) ) -> G : S --> CC ) | 
						
							| 23 |  | 0ex |  |-  (/) e. _V | 
						
							| 24 | 10 23 | eqeltrdi |  |-  ( ( ph /\ S = (/) ) -> S e. _V ) | 
						
							| 25 | 1 18 19 20 21 22 24 | ulm2 |  |-  ( ( ph /\ S = (/) ) -> ( F ( ~~>u ` S ) G <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x ) ) | 
						
							| 26 | 17 25 | mpbird |  |-  ( ( ph /\ S = (/) ) -> F ( ~~>u ` S ) G ) |