| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ulmclm.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 2 |  | ulmclm.m |  |-  ( ph -> M e. ZZ ) | 
						
							| 3 |  | ulmclm.f |  |-  ( ph -> F : Z --> ( CC ^m S ) ) | 
						
							| 4 |  | ulmclm.a |  |-  ( ph -> A e. S ) | 
						
							| 5 |  | ulmclm.h |  |-  ( ph -> H e. W ) | 
						
							| 6 |  | ulmclm.e |  |-  ( ( ph /\ k e. Z ) -> ( ( F ` k ) ` A ) = ( H ` k ) ) | 
						
							| 7 |  | ulmclm.u |  |-  ( ph -> F ( ~~>u ` S ) G ) | 
						
							| 8 |  | fveq2 |  |-  ( z = A -> ( ( F ` k ) ` z ) = ( ( F ` k ) ` A ) ) | 
						
							| 9 |  | fveq2 |  |-  ( z = A -> ( G ` z ) = ( G ` A ) ) | 
						
							| 10 | 8 9 | oveq12d |  |-  ( z = A -> ( ( ( F ` k ) ` z ) - ( G ` z ) ) = ( ( ( F ` k ) ` A ) - ( G ` A ) ) ) | 
						
							| 11 | 10 | fveq2d |  |-  ( z = A -> ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) = ( abs ` ( ( ( F ` k ) ` A ) - ( G ` A ) ) ) ) | 
						
							| 12 | 11 | breq1d |  |-  ( z = A -> ( ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x <-> ( abs ` ( ( ( F ` k ) ` A ) - ( G ` A ) ) ) < x ) ) | 
						
							| 13 | 12 | rspcv |  |-  ( A e. S -> ( A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x -> ( abs ` ( ( ( F ` k ) ` A ) - ( G ` A ) ) ) < x ) ) | 
						
							| 14 | 4 13 | syl |  |-  ( ph -> ( A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x -> ( abs ` ( ( ( F ` k ) ` A ) - ( G ` A ) ) ) < x ) ) | 
						
							| 15 | 14 | ralimdv |  |-  ( ph -> ( A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x -> A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( F ` k ) ` A ) - ( G ` A ) ) ) < x ) ) | 
						
							| 16 | 15 | reximdv |  |-  ( ph -> ( E. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x -> E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( F ` k ) ` A ) - ( G ` A ) ) ) < x ) ) | 
						
							| 17 | 16 | ralimdv |  |-  ( ph -> ( A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x -> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( F ` k ) ` A ) - ( G ` A ) ) ) < x ) ) | 
						
							| 18 |  | eqidd |  |-  ( ( ph /\ ( k e. Z /\ z e. S ) ) -> ( ( F ` k ) ` z ) = ( ( F ` k ) ` z ) ) | 
						
							| 19 |  | eqidd |  |-  ( ( ph /\ z e. S ) -> ( G ` z ) = ( G ` z ) ) | 
						
							| 20 |  | ulmcl |  |-  ( F ( ~~>u ` S ) G -> G : S --> CC ) | 
						
							| 21 | 7 20 | syl |  |-  ( ph -> G : S --> CC ) | 
						
							| 22 |  | ulmscl |  |-  ( F ( ~~>u ` S ) G -> S e. _V ) | 
						
							| 23 | 7 22 | syl |  |-  ( ph -> S e. _V ) | 
						
							| 24 | 1 2 3 18 19 21 23 | ulm2 |  |-  ( ph -> ( F ( ~~>u ` S ) G <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` k ) ` z ) - ( G ` z ) ) ) < x ) ) | 
						
							| 25 | 6 | eqcomd |  |-  ( ( ph /\ k e. Z ) -> ( H ` k ) = ( ( F ` k ) ` A ) ) | 
						
							| 26 | 21 4 | ffvelcdmd |  |-  ( ph -> ( G ` A ) e. CC ) | 
						
							| 27 | 3 | ffvelcdmda |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) e. ( CC ^m S ) ) | 
						
							| 28 |  | elmapi |  |-  ( ( F ` k ) e. ( CC ^m S ) -> ( F ` k ) : S --> CC ) | 
						
							| 29 | 27 28 | syl |  |-  ( ( ph /\ k e. Z ) -> ( F ` k ) : S --> CC ) | 
						
							| 30 | 4 | adantr |  |-  ( ( ph /\ k e. Z ) -> A e. S ) | 
						
							| 31 | 29 30 | ffvelcdmd |  |-  ( ( ph /\ k e. Z ) -> ( ( F ` k ) ` A ) e. CC ) | 
						
							| 32 | 1 2 5 25 26 31 | clim2c |  |-  ( ph -> ( H ~~> ( G ` A ) <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( abs ` ( ( ( F ` k ) ` A ) - ( G ` A ) ) ) < x ) ) | 
						
							| 33 | 17 24 32 | 3imtr4d |  |-  ( ph -> ( F ( ~~>u ` S ) G -> H ~~> ( G ` A ) ) ) | 
						
							| 34 | 7 33 | mpd |  |-  ( ph -> H ~~> ( G ` A ) ) |