Step |
Hyp |
Ref |
Expression |
1 |
|
ulmrel |
|- Rel ( ~~>u ` S ) |
2 |
|
ulmuni |
|- ( ( x ( ~~>u ` S ) y /\ x ( ~~>u ` S ) z ) -> y = z ) |
3 |
2
|
ax-gen |
|- A. z ( ( x ( ~~>u ` S ) y /\ x ( ~~>u ` S ) z ) -> y = z ) |
4 |
3
|
gen2 |
|- A. x A. y A. z ( ( x ( ~~>u ` S ) y /\ x ( ~~>u ` S ) z ) -> y = z ) |
5 |
|
dffun2 |
|- ( Fun ( ~~>u ` S ) <-> ( Rel ( ~~>u ` S ) /\ A. x A. y A. z ( ( x ( ~~>u ` S ) y /\ x ( ~~>u ` S ) z ) -> y = z ) ) ) |
6 |
1 4 5
|
mpbir2an |
|- Fun ( ~~>u ` S ) |
7 |
|
funfvbrb |
|- ( Fun ( ~~>u ` S ) -> ( F e. dom ( ~~>u ` S ) <-> F ( ~~>u ` S ) ( ( ~~>u ` S ) ` F ) ) ) |
8 |
6 7
|
ax-mp |
|- ( F e. dom ( ~~>u ` S ) <-> F ( ~~>u ` S ) ( ( ~~>u ` S ) ` F ) ) |