Step |
Hyp |
Ref |
Expression |
1 |
|
ulmpm |
|- ( F ( ~~>u ` S ) G -> F e. ( ( CC ^m S ) ^pm ZZ ) ) |
2 |
|
ovex |
|- ( CC ^m S ) e. _V |
3 |
|
zex |
|- ZZ e. _V |
4 |
2 3
|
elpm2 |
|- ( F e. ( ( CC ^m S ) ^pm ZZ ) <-> ( F : dom F --> ( CC ^m S ) /\ dom F C_ ZZ ) ) |
5 |
4
|
simplbi |
|- ( F e. ( ( CC ^m S ) ^pm ZZ ) -> F : dom F --> ( CC ^m S ) ) |
6 |
1 5
|
syl |
|- ( F ( ~~>u ` S ) G -> F : dom F --> ( CC ^m S ) ) |
7 |
6
|
adantl |
|- ( ( F Fn Z /\ F ( ~~>u ` S ) G ) -> F : dom F --> ( CC ^m S ) ) |
8 |
|
fndm |
|- ( F Fn Z -> dom F = Z ) |
9 |
8
|
adantr |
|- ( ( F Fn Z /\ F ( ~~>u ` S ) G ) -> dom F = Z ) |
10 |
9
|
feq2d |
|- ( ( F Fn Z /\ F ( ~~>u ` S ) G ) -> ( F : dom F --> ( CC ^m S ) <-> F : Z --> ( CC ^m S ) ) ) |
11 |
7 10
|
mpbid |
|- ( ( F Fn Z /\ F ( ~~>u ` S ) G ) -> F : Z --> ( CC ^m S ) ) |