Step |
Hyp |
Ref |
Expression |
1 |
|
ulm2.z |
|- Z = ( ZZ>= ` M ) |
2 |
|
ulm2.m |
|- ( ph -> M e. ZZ ) |
3 |
|
ulm2.f |
|- ( ph -> F : Z --> ( CC ^m S ) ) |
4 |
|
ulm2.b |
|- ( ( ph /\ ( k e. Z /\ z e. S ) ) -> ( ( F ` k ) ` z ) = B ) |
5 |
|
ulm2.a |
|- ( ( ph /\ z e. S ) -> ( G ` z ) = A ) |
6 |
|
ulmi.u |
|- ( ph -> F ( ~~>u ` S ) G ) |
7 |
|
ulmi.c |
|- ( ph -> C e. RR+ ) |
8 |
|
breq2 |
|- ( x = C -> ( ( abs ` ( B - A ) ) < x <-> ( abs ` ( B - A ) ) < C ) ) |
9 |
8
|
ralbidv |
|- ( x = C -> ( A. z e. S ( abs ` ( B - A ) ) < x <-> A. z e. S ( abs ` ( B - A ) ) < C ) ) |
10 |
9
|
rexralbidv |
|- ( x = C -> ( E. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( B - A ) ) < x <-> E. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( B - A ) ) < C ) ) |
11 |
|
ulmcl |
|- ( F ( ~~>u ` S ) G -> G : S --> CC ) |
12 |
6 11
|
syl |
|- ( ph -> G : S --> CC ) |
13 |
|
ulmscl |
|- ( F ( ~~>u ` S ) G -> S e. _V ) |
14 |
6 13
|
syl |
|- ( ph -> S e. _V ) |
15 |
1 2 3 4 5 12 14
|
ulm2 |
|- ( ph -> ( F ( ~~>u ` S ) G <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( B - A ) ) < x ) ) |
16 |
6 15
|
mpbid |
|- ( ph -> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( B - A ) ) < x ) |
17 |
10 16 7
|
rspcdva |
|- ( ph -> E. j e. Z A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( B - A ) ) < C ) |