Step |
Hyp |
Ref |
Expression |
1 |
|
ulmshft.z |
|- Z = ( ZZ>= ` M ) |
2 |
|
ulmshft.w |
|- W = ( ZZ>= ` ( M + K ) ) |
3 |
|
ulmshft.m |
|- ( ph -> M e. ZZ ) |
4 |
|
ulmshft.k |
|- ( ph -> K e. ZZ ) |
5 |
|
ulmshft.f |
|- ( ph -> F : Z --> ( CC ^m S ) ) |
6 |
|
ulmshft.h |
|- ( ph -> H = ( n e. W |-> ( F ` ( n - K ) ) ) ) |
7 |
3
|
ad2antrr |
|- ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) -> M e. ZZ ) |
8 |
5
|
ad2antrr |
|- ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) -> F : Z --> ( CC ^m S ) ) |
9 |
|
eqidd |
|- ( ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) /\ ( m e. Z /\ z e. S ) ) -> ( ( F ` m ) ` z ) = ( ( F ` m ) ` z ) ) |
10 |
|
eqidd |
|- ( ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) /\ z e. S ) -> ( G ` z ) = ( G ` z ) ) |
11 |
|
simplr |
|- ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) -> F ( ~~>u ` S ) G ) |
12 |
|
simpr |
|- ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) -> x e. RR+ ) |
13 |
1 7 8 9 10 11 12
|
ulmi |
|- ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) -> E. i e. Z A. m e. ( ZZ>= ` i ) A. z e. S ( abs ` ( ( ( F ` m ) ` z ) - ( G ` z ) ) ) < x ) |
14 |
|
simpr |
|- ( ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) /\ i e. Z ) -> i e. Z ) |
15 |
14 1
|
eleqtrdi |
|- ( ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) /\ i e. Z ) -> i e. ( ZZ>= ` M ) ) |
16 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) /\ i e. Z ) -> K e. ZZ ) |
17 |
|
eluzadd |
|- ( ( i e. ( ZZ>= ` M ) /\ K e. ZZ ) -> ( i + K ) e. ( ZZ>= ` ( M + K ) ) ) |
18 |
15 16 17
|
syl2anc |
|- ( ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) /\ i e. Z ) -> ( i + K ) e. ( ZZ>= ` ( M + K ) ) ) |
19 |
18 2
|
eleqtrrdi |
|- ( ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) /\ i e. Z ) -> ( i + K ) e. W ) |
20 |
|
eluzelz |
|- ( i e. ( ZZ>= ` M ) -> i e. ZZ ) |
21 |
15 20
|
syl |
|- ( ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) /\ i e. Z ) -> i e. ZZ ) |
22 |
21
|
adantr |
|- ( ( ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) /\ i e. Z ) /\ k e. ( ZZ>= ` ( i + K ) ) ) -> i e. ZZ ) |
23 |
4
|
adantr |
|- ( ( ph /\ F ( ~~>u ` S ) G ) -> K e. ZZ ) |
24 |
23
|
ad3antrrr |
|- ( ( ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) /\ i e. Z ) /\ k e. ( ZZ>= ` ( i + K ) ) ) -> K e. ZZ ) |
25 |
|
simpr |
|- ( ( ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) /\ i e. Z ) /\ k e. ( ZZ>= ` ( i + K ) ) ) -> k e. ( ZZ>= ` ( i + K ) ) ) |
26 |
|
eluzsub |
|- ( ( i e. ZZ /\ K e. ZZ /\ k e. ( ZZ>= ` ( i + K ) ) ) -> ( k - K ) e. ( ZZ>= ` i ) ) |
27 |
22 24 25 26
|
syl3anc |
|- ( ( ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) /\ i e. Z ) /\ k e. ( ZZ>= ` ( i + K ) ) ) -> ( k - K ) e. ( ZZ>= ` i ) ) |
28 |
|
fveq2 |
|- ( m = ( k - K ) -> ( F ` m ) = ( F ` ( k - K ) ) ) |
29 |
28
|
fveq1d |
|- ( m = ( k - K ) -> ( ( F ` m ) ` z ) = ( ( F ` ( k - K ) ) ` z ) ) |
30 |
29
|
fvoveq1d |
|- ( m = ( k - K ) -> ( abs ` ( ( ( F ` m ) ` z ) - ( G ` z ) ) ) = ( abs ` ( ( ( F ` ( k - K ) ) ` z ) - ( G ` z ) ) ) ) |
31 |
30
|
breq1d |
|- ( m = ( k - K ) -> ( ( abs ` ( ( ( F ` m ) ` z ) - ( G ` z ) ) ) < x <-> ( abs ` ( ( ( F ` ( k - K ) ) ` z ) - ( G ` z ) ) ) < x ) ) |
32 |
31
|
ralbidv |
|- ( m = ( k - K ) -> ( A. z e. S ( abs ` ( ( ( F ` m ) ` z ) - ( G ` z ) ) ) < x <-> A. z e. S ( abs ` ( ( ( F ` ( k - K ) ) ` z ) - ( G ` z ) ) ) < x ) ) |
33 |
32
|
rspcv |
|- ( ( k - K ) e. ( ZZ>= ` i ) -> ( A. m e. ( ZZ>= ` i ) A. z e. S ( abs ` ( ( ( F ` m ) ` z ) - ( G ` z ) ) ) < x -> A. z e. S ( abs ` ( ( ( F ` ( k - K ) ) ` z ) - ( G ` z ) ) ) < x ) ) |
34 |
27 33
|
syl |
|- ( ( ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) /\ i e. Z ) /\ k e. ( ZZ>= ` ( i + K ) ) ) -> ( A. m e. ( ZZ>= ` i ) A. z e. S ( abs ` ( ( ( F ` m ) ` z ) - ( G ` z ) ) ) < x -> A. z e. S ( abs ` ( ( ( F ` ( k - K ) ) ` z ) - ( G ` z ) ) ) < x ) ) |
35 |
34
|
ralrimdva |
|- ( ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) /\ i e. Z ) -> ( A. m e. ( ZZ>= ` i ) A. z e. S ( abs ` ( ( ( F ` m ) ` z ) - ( G ` z ) ) ) < x -> A. k e. ( ZZ>= ` ( i + K ) ) A. z e. S ( abs ` ( ( ( F ` ( k - K ) ) ` z ) - ( G ` z ) ) ) < x ) ) |
36 |
|
fveq2 |
|- ( j = ( i + K ) -> ( ZZ>= ` j ) = ( ZZ>= ` ( i + K ) ) ) |
37 |
36
|
raleqdv |
|- ( j = ( i + K ) -> ( A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` ( k - K ) ) ` z ) - ( G ` z ) ) ) < x <-> A. k e. ( ZZ>= ` ( i + K ) ) A. z e. S ( abs ` ( ( ( F ` ( k - K ) ) ` z ) - ( G ` z ) ) ) < x ) ) |
38 |
37
|
rspcev |
|- ( ( ( i + K ) e. W /\ A. k e. ( ZZ>= ` ( i + K ) ) A. z e. S ( abs ` ( ( ( F ` ( k - K ) ) ` z ) - ( G ` z ) ) ) < x ) -> E. j e. W A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` ( k - K ) ) ` z ) - ( G ` z ) ) ) < x ) |
39 |
19 35 38
|
syl6an |
|- ( ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) /\ i e. Z ) -> ( A. m e. ( ZZ>= ` i ) A. z e. S ( abs ` ( ( ( F ` m ) ` z ) - ( G ` z ) ) ) < x -> E. j e. W A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` ( k - K ) ) ` z ) - ( G ` z ) ) ) < x ) ) |
40 |
39
|
rexlimdva |
|- ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) -> ( E. i e. Z A. m e. ( ZZ>= ` i ) A. z e. S ( abs ` ( ( ( F ` m ) ` z ) - ( G ` z ) ) ) < x -> E. j e. W A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` ( k - K ) ) ` z ) - ( G ` z ) ) ) < x ) ) |
41 |
13 40
|
mpd |
|- ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ x e. RR+ ) -> E. j e. W A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` ( k - K ) ) ` z ) - ( G ` z ) ) ) < x ) |
42 |
41
|
ralrimiva |
|- ( ( ph /\ F ( ~~>u ` S ) G ) -> A. x e. RR+ E. j e. W A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` ( k - K ) ) ` z ) - ( G ` z ) ) ) < x ) |
43 |
3 4
|
zaddcld |
|- ( ph -> ( M + K ) e. ZZ ) |
44 |
43
|
adantr |
|- ( ( ph /\ F ( ~~>u ` S ) G ) -> ( M + K ) e. ZZ ) |
45 |
5
|
adantr |
|- ( ( ph /\ n e. W ) -> F : Z --> ( CC ^m S ) ) |
46 |
3
|
adantr |
|- ( ( ph /\ n e. W ) -> M e. ZZ ) |
47 |
4
|
adantr |
|- ( ( ph /\ n e. W ) -> K e. ZZ ) |
48 |
|
simpr |
|- ( ( ph /\ n e. W ) -> n e. W ) |
49 |
48 2
|
eleqtrdi |
|- ( ( ph /\ n e. W ) -> n e. ( ZZ>= ` ( M + K ) ) ) |
50 |
|
eluzsub |
|- ( ( M e. ZZ /\ K e. ZZ /\ n e. ( ZZ>= ` ( M + K ) ) ) -> ( n - K ) e. ( ZZ>= ` M ) ) |
51 |
46 47 49 50
|
syl3anc |
|- ( ( ph /\ n e. W ) -> ( n - K ) e. ( ZZ>= ` M ) ) |
52 |
51 1
|
eleqtrrdi |
|- ( ( ph /\ n e. W ) -> ( n - K ) e. Z ) |
53 |
45 52
|
ffvelrnd |
|- ( ( ph /\ n e. W ) -> ( F ` ( n - K ) ) e. ( CC ^m S ) ) |
54 |
6 53
|
fmpt3d |
|- ( ph -> H : W --> ( CC ^m S ) ) |
55 |
54
|
adantr |
|- ( ( ph /\ F ( ~~>u ` S ) G ) -> H : W --> ( CC ^m S ) ) |
56 |
6
|
ad2antrr |
|- ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ ( k e. W /\ z e. S ) ) -> H = ( n e. W |-> ( F ` ( n - K ) ) ) ) |
57 |
56
|
fveq1d |
|- ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ ( k e. W /\ z e. S ) ) -> ( H ` k ) = ( ( n e. W |-> ( F ` ( n - K ) ) ) ` k ) ) |
58 |
|
fvoveq1 |
|- ( n = k -> ( F ` ( n - K ) ) = ( F ` ( k - K ) ) ) |
59 |
|
eqid |
|- ( n e. W |-> ( F ` ( n - K ) ) ) = ( n e. W |-> ( F ` ( n - K ) ) ) |
60 |
|
fvex |
|- ( F ` ( k - K ) ) e. _V |
61 |
58 59 60
|
fvmpt |
|- ( k e. W -> ( ( n e. W |-> ( F ` ( n - K ) ) ) ` k ) = ( F ` ( k - K ) ) ) |
62 |
61
|
ad2antrl |
|- ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ ( k e. W /\ z e. S ) ) -> ( ( n e. W |-> ( F ` ( n - K ) ) ) ` k ) = ( F ` ( k - K ) ) ) |
63 |
57 62
|
eqtrd |
|- ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ ( k e. W /\ z e. S ) ) -> ( H ` k ) = ( F ` ( k - K ) ) ) |
64 |
63
|
fveq1d |
|- ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ ( k e. W /\ z e. S ) ) -> ( ( H ` k ) ` z ) = ( ( F ` ( k - K ) ) ` z ) ) |
65 |
|
eqidd |
|- ( ( ( ph /\ F ( ~~>u ` S ) G ) /\ z e. S ) -> ( G ` z ) = ( G ` z ) ) |
66 |
|
ulmcl |
|- ( F ( ~~>u ` S ) G -> G : S --> CC ) |
67 |
66
|
adantl |
|- ( ( ph /\ F ( ~~>u ` S ) G ) -> G : S --> CC ) |
68 |
|
ulmscl |
|- ( F ( ~~>u ` S ) G -> S e. _V ) |
69 |
68
|
adantl |
|- ( ( ph /\ F ( ~~>u ` S ) G ) -> S e. _V ) |
70 |
2 44 55 64 65 67 69
|
ulm2 |
|- ( ( ph /\ F ( ~~>u ` S ) G ) -> ( H ( ~~>u ` S ) G <-> A. x e. RR+ E. j e. W A. k e. ( ZZ>= ` j ) A. z e. S ( abs ` ( ( ( F ` ( k - K ) ) ` z ) - ( G ` z ) ) ) < x ) ) |
71 |
42 70
|
mpbird |
|- ( ( ph /\ F ( ~~>u ` S ) G ) -> H ( ~~>u ` S ) G ) |
72 |
71
|
ex |
|- ( ph -> ( F ( ~~>u ` S ) G -> H ( ~~>u ` S ) G ) ) |