| Step | Hyp | Ref | Expression | 
						
							| 1 |  | umgr2adedgwlk.e |  |-  E = ( Edg ` G ) | 
						
							| 2 |  | umgr2adedgwlk.i |  |-  I = ( iEdg ` G ) | 
						
							| 3 |  | umgr2adedgwlk.f |  |-  F = <" J K "> | 
						
							| 4 |  | umgr2adedgwlk.p |  |-  P = <" A B C "> | 
						
							| 5 |  | umgr2adedgwlk.g |  |-  ( ph -> G e. UMGraph ) | 
						
							| 6 |  | umgr2adedgwlk.a |  |-  ( ph -> ( { A , B } e. E /\ { B , C } e. E ) ) | 
						
							| 7 |  | umgr2adedgwlk.j |  |-  ( ph -> ( I ` J ) = { A , B } ) | 
						
							| 8 |  | umgr2adedgwlk.k |  |-  ( ph -> ( I ` K ) = { B , C } ) | 
						
							| 9 |  | umgr2adedgspth.n |  |-  ( ph -> A =/= C ) | 
						
							| 10 |  | 3anass |  |-  ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) <-> ( G e. UMGraph /\ ( { A , B } e. E /\ { B , C } e. E ) ) ) | 
						
							| 11 | 5 6 10 | sylanbrc |  |-  ( ph -> ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) ) | 
						
							| 12 | 1 | umgr2adedgwlklem |  |-  ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) -> ( ( A =/= B /\ B =/= C ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) ) | 
						
							| 13 | 11 12 | syl |  |-  ( ph -> ( ( A =/= B /\ B =/= C ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) ) | 
						
							| 14 | 13 | simprd |  |-  ( ph -> ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) | 
						
							| 15 | 13 | simpld |  |-  ( ph -> ( A =/= B /\ B =/= C ) ) | 
						
							| 16 |  | ssid |  |-  { A , B } C_ { A , B } | 
						
							| 17 | 16 7 | sseqtrrid |  |-  ( ph -> { A , B } C_ ( I ` J ) ) | 
						
							| 18 |  | ssid |  |-  { B , C } C_ { B , C } | 
						
							| 19 | 18 8 | sseqtrrid |  |-  ( ph -> { B , C } C_ ( I ` K ) ) | 
						
							| 20 | 17 19 | jca |  |-  ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) ) | 
						
							| 21 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 22 |  | fveq2 |  |-  ( K = J -> ( I ` K ) = ( I ` J ) ) | 
						
							| 23 | 22 | eqcoms |  |-  ( J = K -> ( I ` K ) = ( I ` J ) ) | 
						
							| 24 | 23 | eqeq1d |  |-  ( J = K -> ( ( I ` K ) = { B , C } <-> ( I ` J ) = { B , C } ) ) | 
						
							| 25 |  | eqtr2 |  |-  ( ( ( I ` J ) = { B , C } /\ ( I ` J ) = { A , B } ) -> { B , C } = { A , B } ) | 
						
							| 26 | 25 | ex |  |-  ( ( I ` J ) = { B , C } -> ( ( I ` J ) = { A , B } -> { B , C } = { A , B } ) ) | 
						
							| 27 | 24 26 | biimtrdi |  |-  ( J = K -> ( ( I ` K ) = { B , C } -> ( ( I ` J ) = { A , B } -> { B , C } = { A , B } ) ) ) | 
						
							| 28 | 27 | com13 |  |-  ( ( I ` J ) = { A , B } -> ( ( I ` K ) = { B , C } -> ( J = K -> { B , C } = { A , B } ) ) ) | 
						
							| 29 | 7 8 28 | sylc |  |-  ( ph -> ( J = K -> { B , C } = { A , B } ) ) | 
						
							| 30 |  | eqcom |  |-  ( { B , C } = { A , B } <-> { A , B } = { B , C } ) | 
						
							| 31 |  | prcom |  |-  { B , C } = { C , B } | 
						
							| 32 | 31 | eqeq2i |  |-  ( { A , B } = { B , C } <-> { A , B } = { C , B } ) | 
						
							| 33 | 30 32 | bitri |  |-  ( { B , C } = { A , B } <-> { A , B } = { C , B } ) | 
						
							| 34 | 21 1 | umgrpredgv |  |-  ( ( G e. UMGraph /\ { A , B } e. E ) -> ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) | 
						
							| 35 | 34 | simpld |  |-  ( ( G e. UMGraph /\ { A , B } e. E ) -> A e. ( Vtx ` G ) ) | 
						
							| 36 | 35 | ex |  |-  ( G e. UMGraph -> ( { A , B } e. E -> A e. ( Vtx ` G ) ) ) | 
						
							| 37 | 21 1 | umgrpredgv |  |-  ( ( G e. UMGraph /\ { B , C } e. E ) -> ( B e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) | 
						
							| 38 | 37 | simprd |  |-  ( ( G e. UMGraph /\ { B , C } e. E ) -> C e. ( Vtx ` G ) ) | 
						
							| 39 | 38 | ex |  |-  ( G e. UMGraph -> ( { B , C } e. E -> C e. ( Vtx ` G ) ) ) | 
						
							| 40 | 36 39 | anim12d |  |-  ( G e. UMGraph -> ( ( { A , B } e. E /\ { B , C } e. E ) -> ( A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) ) | 
						
							| 41 | 5 6 40 | sylc |  |-  ( ph -> ( A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) | 
						
							| 42 |  | preqr1g |  |-  ( ( A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) -> ( { A , B } = { C , B } -> A = C ) ) | 
						
							| 43 | 41 42 | syl |  |-  ( ph -> ( { A , B } = { C , B } -> A = C ) ) | 
						
							| 44 |  | eqneqall |  |-  ( A = C -> ( A =/= C -> J =/= K ) ) | 
						
							| 45 | 43 9 44 | syl6ci |  |-  ( ph -> ( { A , B } = { C , B } -> J =/= K ) ) | 
						
							| 46 | 33 45 | biimtrid |  |-  ( ph -> ( { B , C } = { A , B } -> J =/= K ) ) | 
						
							| 47 | 29 46 | syld |  |-  ( ph -> ( J = K -> J =/= K ) ) | 
						
							| 48 |  | neqne |  |-  ( -. J = K -> J =/= K ) | 
						
							| 49 | 47 48 | pm2.61d1 |  |-  ( ph -> J =/= K ) | 
						
							| 50 | 4 3 14 15 20 21 2 49 9 | 2spthd |  |-  ( ph -> F ( SPaths ` G ) P ) |