Step |
Hyp |
Ref |
Expression |
1 |
|
umgr2adedgwlk.e |
|- E = ( Edg ` G ) |
2 |
|
umgr2adedgwlk.i |
|- I = ( iEdg ` G ) |
3 |
|
umgr2adedgwlk.f |
|- F = <" J K "> |
4 |
|
umgr2adedgwlk.p |
|- P = <" A B C "> |
5 |
|
umgr2adedgwlk.g |
|- ( ph -> G e. UMGraph ) |
6 |
|
umgr2adedgwlk.a |
|- ( ph -> ( { A , B } e. E /\ { B , C } e. E ) ) |
7 |
|
umgr2adedgwlk.j |
|- ( ph -> ( I ` J ) = { A , B } ) |
8 |
|
umgr2adedgwlk.k |
|- ( ph -> ( I ` K ) = { B , C } ) |
9 |
|
3anass |
|- ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) <-> ( G e. UMGraph /\ ( { A , B } e. E /\ { B , C } e. E ) ) ) |
10 |
5 6 9
|
sylanbrc |
|- ( ph -> ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) ) |
11 |
1
|
umgr2adedgwlklem |
|- ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) -> ( ( A =/= B /\ B =/= C ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) ) |
12 |
10 11
|
syl |
|- ( ph -> ( ( A =/= B /\ B =/= C ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) ) |
13 |
12
|
simprd |
|- ( ph -> ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) |
14 |
12
|
simpld |
|- ( ph -> ( A =/= B /\ B =/= C ) ) |
15 |
|
ssid |
|- { A , B } C_ { A , B } |
16 |
15 7
|
sseqtrrid |
|- ( ph -> { A , B } C_ ( I ` J ) ) |
17 |
|
ssid |
|- { B , C } C_ { B , C } |
18 |
17 8
|
sseqtrrid |
|- ( ph -> { B , C } C_ ( I ` K ) ) |
19 |
16 18
|
jca |
|- ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) ) |
20 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
21 |
4 3 13 14 19 20 2
|
2wlkd |
|- ( ph -> F ( Walks ` G ) P ) |
22 |
3
|
fveq2i |
|- ( # ` F ) = ( # ` <" J K "> ) |
23 |
|
s2len |
|- ( # ` <" J K "> ) = 2 |
24 |
22 23
|
eqtri |
|- ( # ` F ) = 2 |
25 |
24
|
a1i |
|- ( ph -> ( # ` F ) = 2 ) |
26 |
|
s3fv0 |
|- ( A e. ( Vtx ` G ) -> ( <" A B C "> ` 0 ) = A ) |
27 |
|
s3fv1 |
|- ( B e. ( Vtx ` G ) -> ( <" A B C "> ` 1 ) = B ) |
28 |
|
s3fv2 |
|- ( C e. ( Vtx ` G ) -> ( <" A B C "> ` 2 ) = C ) |
29 |
26 27 28
|
3anim123i |
|- ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) -> ( ( <" A B C "> ` 0 ) = A /\ ( <" A B C "> ` 1 ) = B /\ ( <" A B C "> ` 2 ) = C ) ) |
30 |
13 29
|
syl |
|- ( ph -> ( ( <" A B C "> ` 0 ) = A /\ ( <" A B C "> ` 1 ) = B /\ ( <" A B C "> ` 2 ) = C ) ) |
31 |
4
|
fveq1i |
|- ( P ` 0 ) = ( <" A B C "> ` 0 ) |
32 |
31
|
eqeq2i |
|- ( A = ( P ` 0 ) <-> A = ( <" A B C "> ` 0 ) ) |
33 |
|
eqcom |
|- ( A = ( <" A B C "> ` 0 ) <-> ( <" A B C "> ` 0 ) = A ) |
34 |
32 33
|
bitri |
|- ( A = ( P ` 0 ) <-> ( <" A B C "> ` 0 ) = A ) |
35 |
4
|
fveq1i |
|- ( P ` 1 ) = ( <" A B C "> ` 1 ) |
36 |
35
|
eqeq2i |
|- ( B = ( P ` 1 ) <-> B = ( <" A B C "> ` 1 ) ) |
37 |
|
eqcom |
|- ( B = ( <" A B C "> ` 1 ) <-> ( <" A B C "> ` 1 ) = B ) |
38 |
36 37
|
bitri |
|- ( B = ( P ` 1 ) <-> ( <" A B C "> ` 1 ) = B ) |
39 |
4
|
fveq1i |
|- ( P ` 2 ) = ( <" A B C "> ` 2 ) |
40 |
39
|
eqeq2i |
|- ( C = ( P ` 2 ) <-> C = ( <" A B C "> ` 2 ) ) |
41 |
|
eqcom |
|- ( C = ( <" A B C "> ` 2 ) <-> ( <" A B C "> ` 2 ) = C ) |
42 |
40 41
|
bitri |
|- ( C = ( P ` 2 ) <-> ( <" A B C "> ` 2 ) = C ) |
43 |
34 38 42
|
3anbi123i |
|- ( ( A = ( P ` 0 ) /\ B = ( P ` 1 ) /\ C = ( P ` 2 ) ) <-> ( ( <" A B C "> ` 0 ) = A /\ ( <" A B C "> ` 1 ) = B /\ ( <" A B C "> ` 2 ) = C ) ) |
44 |
30 43
|
sylibr |
|- ( ph -> ( A = ( P ` 0 ) /\ B = ( P ` 1 ) /\ C = ( P ` 2 ) ) ) |
45 |
21 25 44
|
3jca |
|- ( ph -> ( F ( Walks ` G ) P /\ ( # ` F ) = 2 /\ ( A = ( P ` 0 ) /\ B = ( P ` 1 ) /\ C = ( P ` 2 ) ) ) ) |