Metamath Proof Explorer


Theorem umgr2adedgwlkon

Description: In a multigraph, two adjacent edges form a walk between two vertices. (Contributed by Alexander van der Vekens, 18-Feb-2018) (Revised by AV, 30-Jan-2021)

Ref Expression
Hypotheses umgr2adedgwlk.e
|- E = ( Edg ` G )
umgr2adedgwlk.i
|- I = ( iEdg ` G )
umgr2adedgwlk.f
|- F = <" J K ">
umgr2adedgwlk.p
|- P = <" A B C ">
umgr2adedgwlk.g
|- ( ph -> G e. UMGraph )
umgr2adedgwlk.a
|- ( ph -> ( { A , B } e. E /\ { B , C } e. E ) )
umgr2adedgwlk.j
|- ( ph -> ( I ` J ) = { A , B } )
umgr2adedgwlk.k
|- ( ph -> ( I ` K ) = { B , C } )
Assertion umgr2adedgwlkon
|- ( ph -> F ( A ( WalksOn ` G ) C ) P )

Proof

Step Hyp Ref Expression
1 umgr2adedgwlk.e
 |-  E = ( Edg ` G )
2 umgr2adedgwlk.i
 |-  I = ( iEdg ` G )
3 umgr2adedgwlk.f
 |-  F = <" J K ">
4 umgr2adedgwlk.p
 |-  P = <" A B C ">
5 umgr2adedgwlk.g
 |-  ( ph -> G e. UMGraph )
6 umgr2adedgwlk.a
 |-  ( ph -> ( { A , B } e. E /\ { B , C } e. E ) )
7 umgr2adedgwlk.j
 |-  ( ph -> ( I ` J ) = { A , B } )
8 umgr2adedgwlk.k
 |-  ( ph -> ( I ` K ) = { B , C } )
9 3anass
 |-  ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) <-> ( G e. UMGraph /\ ( { A , B } e. E /\ { B , C } e. E ) ) )
10 5 6 9 sylanbrc
 |-  ( ph -> ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) )
11 1 umgr2adedgwlklem
 |-  ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) -> ( ( A =/= B /\ B =/= C ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) )
12 10 11 syl
 |-  ( ph -> ( ( A =/= B /\ B =/= C ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) )
13 12 simprd
 |-  ( ph -> ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) )
14 12 simpld
 |-  ( ph -> ( A =/= B /\ B =/= C ) )
15 ssid
 |-  { A , B } C_ { A , B }
16 15 7 sseqtrrid
 |-  ( ph -> { A , B } C_ ( I ` J ) )
17 ssid
 |-  { B , C } C_ { B , C }
18 17 8 sseqtrrid
 |-  ( ph -> { B , C } C_ ( I ` K ) )
19 16 18 jca
 |-  ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) )
20 eqid
 |-  ( Vtx ` G ) = ( Vtx ` G )
21 4 3 13 14 19 20 2 2wlkond
 |-  ( ph -> F ( A ( WalksOn ` G ) C ) P )