Step |
Hyp |
Ref |
Expression |
1 |
|
umgr2adedgwlk.e |
|- E = ( Edg ` G ) |
2 |
|
umgr2adedgwlk.i |
|- I = ( iEdg ` G ) |
3 |
|
umgr2adedgwlk.f |
|- F = <" J K "> |
4 |
|
umgr2adedgwlk.p |
|- P = <" A B C "> |
5 |
|
umgr2adedgwlk.g |
|- ( ph -> G e. UMGraph ) |
6 |
|
umgr2adedgwlk.a |
|- ( ph -> ( { A , B } e. E /\ { B , C } e. E ) ) |
7 |
|
umgr2adedgwlk.j |
|- ( ph -> ( I ` J ) = { A , B } ) |
8 |
|
umgr2adedgwlk.k |
|- ( ph -> ( I ` K ) = { B , C } ) |
9 |
|
3anass |
|- ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) <-> ( G e. UMGraph /\ ( { A , B } e. E /\ { B , C } e. E ) ) ) |
10 |
5 6 9
|
sylanbrc |
|- ( ph -> ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) ) |
11 |
1
|
umgr2adedgwlklem |
|- ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) -> ( ( A =/= B /\ B =/= C ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) ) |
12 |
10 11
|
syl |
|- ( ph -> ( ( A =/= B /\ B =/= C ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) ) |
13 |
12
|
simprd |
|- ( ph -> ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) |
14 |
12
|
simpld |
|- ( ph -> ( A =/= B /\ B =/= C ) ) |
15 |
|
ssid |
|- { A , B } C_ { A , B } |
16 |
15 7
|
sseqtrrid |
|- ( ph -> { A , B } C_ ( I ` J ) ) |
17 |
|
ssid |
|- { B , C } C_ { B , C } |
18 |
17 8
|
sseqtrrid |
|- ( ph -> { B , C } C_ ( I ` K ) ) |
19 |
16 18
|
jca |
|- ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) ) |
20 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
21 |
4 3 13 14 19 20 2
|
2wlkond |
|- ( ph -> F ( A ( WalksOn ` G ) C ) P ) |