| Step | Hyp | Ref | Expression | 
						
							| 1 |  | umgr2adedgwlk.e |  |-  E = ( Edg ` G ) | 
						
							| 2 |  | umgr2adedgwlk.i |  |-  I = ( iEdg ` G ) | 
						
							| 3 |  | umgr2adedgwlk.f |  |-  F = <" J K "> | 
						
							| 4 |  | umgr2adedgwlk.p |  |-  P = <" A B C "> | 
						
							| 5 |  | umgr2adedgwlk.g |  |-  ( ph -> G e. UMGraph ) | 
						
							| 6 |  | umgr2adedgwlk.a |  |-  ( ph -> ( { A , B } e. E /\ { B , C } e. E ) ) | 
						
							| 7 |  | umgr2adedgwlk.j |  |-  ( ph -> ( I ` J ) = { A , B } ) | 
						
							| 8 |  | umgr2adedgwlk.k |  |-  ( ph -> ( I ` K ) = { B , C } ) | 
						
							| 9 |  | 3anass |  |-  ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) <-> ( G e. UMGraph /\ ( { A , B } e. E /\ { B , C } e. E ) ) ) | 
						
							| 10 | 5 6 9 | sylanbrc |  |-  ( ph -> ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) ) | 
						
							| 11 | 1 | umgr2adedgwlklem |  |-  ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) -> ( ( A =/= B /\ B =/= C ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) ) | 
						
							| 12 | 10 11 | syl |  |-  ( ph -> ( ( A =/= B /\ B =/= C ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) ) | 
						
							| 13 | 12 | simprd |  |-  ( ph -> ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) | 
						
							| 14 | 12 | simpld |  |-  ( ph -> ( A =/= B /\ B =/= C ) ) | 
						
							| 15 |  | ssid |  |-  { A , B } C_ { A , B } | 
						
							| 16 | 15 7 | sseqtrrid |  |-  ( ph -> { A , B } C_ ( I ` J ) ) | 
						
							| 17 |  | ssid |  |-  { B , C } C_ { B , C } | 
						
							| 18 | 17 8 | sseqtrrid |  |-  ( ph -> { B , C } C_ ( I ` K ) ) | 
						
							| 19 | 16 18 | jca |  |-  ( ph -> ( { A , B } C_ ( I ` J ) /\ { B , C } C_ ( I ` K ) ) ) | 
						
							| 20 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 21 | 4 3 13 14 19 20 2 | 2wlkond |  |-  ( ph -> F ( A ( WalksOn ` G ) C ) P ) |