| Step | Hyp | Ref | Expression | 
						
							| 1 |  | umgr2adedgwlk.e |  |-  E = ( Edg ` G ) | 
						
							| 2 |  | umgr2adedgwlk.i |  |-  I = ( iEdg ` G ) | 
						
							| 3 |  | umgr2adedgwlk.f |  |-  F = <" J K "> | 
						
							| 4 |  | umgr2adedgwlk.p |  |-  P = <" A B C "> | 
						
							| 5 |  | umgr2adedgwlk.g |  |-  ( ph -> G e. UMGraph ) | 
						
							| 6 |  | umgr2adedgwlk.a |  |-  ( ph -> ( { A , B } e. E /\ { B , C } e. E ) ) | 
						
							| 7 |  | umgr2adedgwlk.j |  |-  ( ph -> ( I ` J ) = { A , B } ) | 
						
							| 8 |  | umgr2adedgwlk.k |  |-  ( ph -> ( I ` K ) = { B , C } ) | 
						
							| 9 | 1 2 3 4 5 6 7 8 | umgr2adedgwlk |  |-  ( ph -> ( F ( Walks ` G ) P /\ ( # ` F ) = 2 /\ ( A = ( P ` 0 ) /\ B = ( P ` 1 ) /\ C = ( P ` 2 ) ) ) ) | 
						
							| 10 |  | simp1 |  |-  ( ( F ( Walks ` G ) P /\ ( # ` F ) = 2 /\ ( A = ( P ` 0 ) /\ B = ( P ` 1 ) /\ C = ( P ` 2 ) ) ) -> F ( Walks ` G ) P ) | 
						
							| 11 |  | id |  |-  ( ( P ` 0 ) = A -> ( P ` 0 ) = A ) | 
						
							| 12 | 11 | eqcoms |  |-  ( A = ( P ` 0 ) -> ( P ` 0 ) = A ) | 
						
							| 13 | 12 | 3ad2ant1 |  |-  ( ( A = ( P ` 0 ) /\ B = ( P ` 1 ) /\ C = ( P ` 2 ) ) -> ( P ` 0 ) = A ) | 
						
							| 14 | 13 | 3ad2ant3 |  |-  ( ( F ( Walks ` G ) P /\ ( # ` F ) = 2 /\ ( A = ( P ` 0 ) /\ B = ( P ` 1 ) /\ C = ( P ` 2 ) ) ) -> ( P ` 0 ) = A ) | 
						
							| 15 |  | fveq2 |  |-  ( 2 = ( # ` F ) -> ( P ` 2 ) = ( P ` ( # ` F ) ) ) | 
						
							| 16 | 15 | eqcoms |  |-  ( ( # ` F ) = 2 -> ( P ` 2 ) = ( P ` ( # ` F ) ) ) | 
						
							| 17 | 16 | eqeq1d |  |-  ( ( # ` F ) = 2 -> ( ( P ` 2 ) = C <-> ( P ` ( # ` F ) ) = C ) ) | 
						
							| 18 | 17 | biimpcd |  |-  ( ( P ` 2 ) = C -> ( ( # ` F ) = 2 -> ( P ` ( # ` F ) ) = C ) ) | 
						
							| 19 | 18 | eqcoms |  |-  ( C = ( P ` 2 ) -> ( ( # ` F ) = 2 -> ( P ` ( # ` F ) ) = C ) ) | 
						
							| 20 | 19 | 3ad2ant3 |  |-  ( ( A = ( P ` 0 ) /\ B = ( P ` 1 ) /\ C = ( P ` 2 ) ) -> ( ( # ` F ) = 2 -> ( P ` ( # ` F ) ) = C ) ) | 
						
							| 21 | 20 | com12 |  |-  ( ( # ` F ) = 2 -> ( ( A = ( P ` 0 ) /\ B = ( P ` 1 ) /\ C = ( P ` 2 ) ) -> ( P ` ( # ` F ) ) = C ) ) | 
						
							| 22 | 21 | a1i |  |-  ( F ( Walks ` G ) P -> ( ( # ` F ) = 2 -> ( ( A = ( P ` 0 ) /\ B = ( P ` 1 ) /\ C = ( P ` 2 ) ) -> ( P ` ( # ` F ) ) = C ) ) ) | 
						
							| 23 | 22 | 3imp |  |-  ( ( F ( Walks ` G ) P /\ ( # ` F ) = 2 /\ ( A = ( P ` 0 ) /\ B = ( P ` 1 ) /\ C = ( P ` 2 ) ) ) -> ( P ` ( # ` F ) ) = C ) | 
						
							| 24 | 10 14 23 | 3jca |  |-  ( ( F ( Walks ` G ) P /\ ( # ` F ) = 2 /\ ( A = ( P ` 0 ) /\ B = ( P ` 1 ) /\ C = ( P ` 2 ) ) ) -> ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = C ) ) | 
						
							| 25 | 9 24 | syl |  |-  ( ph -> ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = C ) ) | 
						
							| 26 |  | 3anass |  |-  ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) <-> ( G e. UMGraph /\ ( { A , B } e. E /\ { B , C } e. E ) ) ) | 
						
							| 27 | 5 6 26 | sylanbrc |  |-  ( ph -> ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) ) | 
						
							| 28 | 1 | umgr2adedgwlklem |  |-  ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) -> ( ( A =/= B /\ B =/= C ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) ) | 
						
							| 29 |  | 3simpb |  |-  ( ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) -> ( A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) | 
						
							| 30 | 29 | adantl |  |-  ( ( ( A =/= B /\ B =/= C ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) -> ( A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) | 
						
							| 31 | 27 28 30 | 3syl |  |-  ( ph -> ( A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) | 
						
							| 32 |  | 3anass |  |-  ( ( G e. UMGraph /\ A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) <-> ( G e. UMGraph /\ ( A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) ) | 
						
							| 33 | 5 31 32 | sylanbrc |  |-  ( ph -> ( G e. UMGraph /\ A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) | 
						
							| 34 |  | s2cli |  |-  <" J K "> e. Word _V | 
						
							| 35 | 3 34 | eqeltri |  |-  F e. Word _V | 
						
							| 36 |  | s3cli |  |-  <" A B C "> e. Word _V | 
						
							| 37 | 4 36 | eqeltri |  |-  P e. Word _V | 
						
							| 38 | 35 37 | pm3.2i |  |-  ( F e. Word _V /\ P e. Word _V ) | 
						
							| 39 |  | id |  |-  ( ( A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) -> ( A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) | 
						
							| 40 | 39 | 3adant1 |  |-  ( ( G e. UMGraph /\ A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) -> ( A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) | 
						
							| 41 | 40 | anim1i |  |-  ( ( ( G e. UMGraph /\ A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) /\ ( F e. Word _V /\ P e. Word _V ) ) -> ( ( A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) /\ ( F e. Word _V /\ P e. Word _V ) ) ) | 
						
							| 42 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 43 | 42 | iswlkon |  |-  ( ( ( A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) /\ ( F e. Word _V /\ P e. Word _V ) ) -> ( F ( A ( WalksOn ` G ) C ) P <-> ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = C ) ) ) | 
						
							| 44 | 41 43 | syl |  |-  ( ( ( G e. UMGraph /\ A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) /\ ( F e. Word _V /\ P e. Word _V ) ) -> ( F ( A ( WalksOn ` G ) C ) P <-> ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = C ) ) ) | 
						
							| 45 | 33 38 44 | sylancl |  |-  ( ph -> ( F ( A ( WalksOn ` G ) C ) P <-> ( F ( Walks ` G ) P /\ ( P ` 0 ) = A /\ ( P ` ( # ` F ) ) = C ) ) ) | 
						
							| 46 | 25 45 | mpbird |  |-  ( ph -> F ( A ( WalksOn ` G ) C ) P ) |