Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
2 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
3 |
1 2
|
clwwlknp |
|- ( W e. ( N ClWWalksN G ) -> ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) |
4 |
|
simpr |
|- ( ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ N e. ( ZZ>= ` 2 ) ) /\ G e. UMGraph ) -> G e. UMGraph ) |
5 |
|
uz2m1nn |
|- ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. NN ) |
6 |
|
lbfzo0 |
|- ( 0 e. ( 0 ..^ ( N - 1 ) ) <-> ( N - 1 ) e. NN ) |
7 |
5 6
|
sylibr |
|- ( N e. ( ZZ>= ` 2 ) -> 0 e. ( 0 ..^ ( N - 1 ) ) ) |
8 |
|
fveq2 |
|- ( i = 0 -> ( W ` i ) = ( W ` 0 ) ) |
9 |
8
|
adantl |
|- ( ( N e. ( ZZ>= ` 2 ) /\ i = 0 ) -> ( W ` i ) = ( W ` 0 ) ) |
10 |
|
oveq1 |
|- ( i = 0 -> ( i + 1 ) = ( 0 + 1 ) ) |
11 |
10
|
adantl |
|- ( ( N e. ( ZZ>= ` 2 ) /\ i = 0 ) -> ( i + 1 ) = ( 0 + 1 ) ) |
12 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
13 |
11 12
|
eqtrdi |
|- ( ( N e. ( ZZ>= ` 2 ) /\ i = 0 ) -> ( i + 1 ) = 1 ) |
14 |
13
|
fveq2d |
|- ( ( N e. ( ZZ>= ` 2 ) /\ i = 0 ) -> ( W ` ( i + 1 ) ) = ( W ` 1 ) ) |
15 |
9 14
|
preq12d |
|- ( ( N e. ( ZZ>= ` 2 ) /\ i = 0 ) -> { ( W ` i ) , ( W ` ( i + 1 ) ) } = { ( W ` 0 ) , ( W ` 1 ) } ) |
16 |
15
|
eleq1d |
|- ( ( N e. ( ZZ>= ` 2 ) /\ i = 0 ) -> ( { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) ) |
17 |
7 16
|
rspcdv |
|- ( N e. ( ZZ>= ` 2 ) -> ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) -> { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) ) |
18 |
17
|
com12 |
|- ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) -> ( N e. ( ZZ>= ` 2 ) -> { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) ) |
19 |
18
|
3ad2ant2 |
|- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) -> ( N e. ( ZZ>= ` 2 ) -> { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) ) |
20 |
19
|
imp |
|- ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ N e. ( ZZ>= ` 2 ) ) -> { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) |
21 |
20
|
adantr |
|- ( ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ N e. ( ZZ>= ` 2 ) ) /\ G e. UMGraph ) -> { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) |
22 |
2
|
umgredgne |
|- ( ( G e. UMGraph /\ { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) -> ( W ` 0 ) =/= ( W ` 1 ) ) |
23 |
22
|
necomd |
|- ( ( G e. UMGraph /\ { ( W ` 0 ) , ( W ` 1 ) } e. ( Edg ` G ) ) -> ( W ` 1 ) =/= ( W ` 0 ) ) |
24 |
4 21 23
|
syl2anc |
|- ( ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) /\ N e. ( ZZ>= ` 2 ) ) /\ G e. UMGraph ) -> ( W ` 1 ) =/= ( W ` 0 ) ) |
25 |
24
|
exp31 |
|- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = N ) /\ A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` W ) , ( W ` 0 ) } e. ( Edg ` G ) ) -> ( N e. ( ZZ>= ` 2 ) -> ( G e. UMGraph -> ( W ` 1 ) =/= ( W ` 0 ) ) ) ) |
26 |
3 25
|
syl |
|- ( W e. ( N ClWWalksN G ) -> ( N e. ( ZZ>= ` 2 ) -> ( G e. UMGraph -> ( W ` 1 ) =/= ( W ` 0 ) ) ) ) |
27 |
26
|
3imp31 |
|- ( ( G e. UMGraph /\ N e. ( ZZ>= ` 2 ) /\ W e. ( N ClWWalksN G ) ) -> ( W ` 1 ) =/= ( W ` 0 ) ) |