Step |
Hyp |
Ref |
Expression |
1 |
|
umgr2wlk.e |
|- E = ( Edg ` G ) |
2 |
1
|
umgr2wlk |
|- ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) -> E. f E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) |
3 |
|
simp1 |
|- ( ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> f ( Walks ` G ) p ) |
4 |
|
eqcom |
|- ( A = ( p ` 0 ) <-> ( p ` 0 ) = A ) |
5 |
4
|
biimpi |
|- ( A = ( p ` 0 ) -> ( p ` 0 ) = A ) |
6 |
5
|
3ad2ant1 |
|- ( ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) -> ( p ` 0 ) = A ) |
7 |
6
|
3ad2ant3 |
|- ( ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> ( p ` 0 ) = A ) |
8 |
|
fveq2 |
|- ( 2 = ( # ` f ) -> ( p ` 2 ) = ( p ` ( # ` f ) ) ) |
9 |
8
|
eqcoms |
|- ( ( # ` f ) = 2 -> ( p ` 2 ) = ( p ` ( # ` f ) ) ) |
10 |
9
|
eqeq1d |
|- ( ( # ` f ) = 2 -> ( ( p ` 2 ) = C <-> ( p ` ( # ` f ) ) = C ) ) |
11 |
10
|
biimpcd |
|- ( ( p ` 2 ) = C -> ( ( # ` f ) = 2 -> ( p ` ( # ` f ) ) = C ) ) |
12 |
11
|
eqcoms |
|- ( C = ( p ` 2 ) -> ( ( # ` f ) = 2 -> ( p ` ( # ` f ) ) = C ) ) |
13 |
12
|
3ad2ant3 |
|- ( ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) -> ( ( # ` f ) = 2 -> ( p ` ( # ` f ) ) = C ) ) |
14 |
13
|
com12 |
|- ( ( # ` f ) = 2 -> ( ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) -> ( p ` ( # ` f ) ) = C ) ) |
15 |
14
|
a1i |
|- ( f ( Walks ` G ) p -> ( ( # ` f ) = 2 -> ( ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) -> ( p ` ( # ` f ) ) = C ) ) ) |
16 |
15
|
3imp |
|- ( ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> ( p ` ( # ` f ) ) = C ) |
17 |
3 7 16
|
3jca |
|- ( ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> ( f ( Walks ` G ) p /\ ( p ` 0 ) = A /\ ( p ` ( # ` f ) ) = C ) ) |
18 |
17
|
adantl |
|- ( ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) /\ ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) -> ( f ( Walks ` G ) p /\ ( p ` 0 ) = A /\ ( p ` ( # ` f ) ) = C ) ) |
19 |
1
|
umgr2adedgwlklem |
|- ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) -> ( ( A =/= B /\ B =/= C ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) ) |
20 |
|
simprr1 |
|- ( ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) /\ ( ( A =/= B /\ B =/= C ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) ) -> A e. ( Vtx ` G ) ) |
21 |
|
simprr3 |
|- ( ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) /\ ( ( A =/= B /\ B =/= C ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) ) -> C e. ( Vtx ` G ) ) |
22 |
20 21
|
jca |
|- ( ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) /\ ( ( A =/= B /\ B =/= C ) /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) ) -> ( A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) |
23 |
19 22
|
mpdan |
|- ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) -> ( A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) ) |
24 |
|
vex |
|- f e. _V |
25 |
|
vex |
|- p e. _V |
26 |
24 25
|
pm3.2i |
|- ( f e. _V /\ p e. _V ) |
27 |
26
|
a1i |
|- ( ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) /\ ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) -> ( f e. _V /\ p e. _V ) ) |
28 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
29 |
28
|
iswlkon |
|- ( ( ( A e. ( Vtx ` G ) /\ C e. ( Vtx ` G ) ) /\ ( f e. _V /\ p e. _V ) ) -> ( f ( A ( WalksOn ` G ) C ) p <-> ( f ( Walks ` G ) p /\ ( p ` 0 ) = A /\ ( p ` ( # ` f ) ) = C ) ) ) |
30 |
23 27 29
|
syl2an2r |
|- ( ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) /\ ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) -> ( f ( A ( WalksOn ` G ) C ) p <-> ( f ( Walks ` G ) p /\ ( p ` 0 ) = A /\ ( p ` ( # ` f ) ) = C ) ) ) |
31 |
18 30
|
mpbird |
|- ( ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) /\ ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) ) -> f ( A ( WalksOn ` G ) C ) p ) |
32 |
31
|
ex |
|- ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) -> ( ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> f ( A ( WalksOn ` G ) C ) p ) ) |
33 |
32
|
2eximdv |
|- ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) -> ( E. f E. p ( f ( Walks ` G ) p /\ ( # ` f ) = 2 /\ ( A = ( p ` 0 ) /\ B = ( p ` 1 ) /\ C = ( p ` 2 ) ) ) -> E. f E. p f ( A ( WalksOn ` G ) C ) p ) ) |
34 |
2 33
|
mpd |
|- ( ( G e. UMGraph /\ { A , B } e. E /\ { B , C } e. E ) -> E. f E. p f ( A ( WalksOn ` G ) C ) p ) |