| Step | Hyp | Ref | Expression | 
						
							| 1 |  | umgrbi.x |  |-  X e. V | 
						
							| 2 |  | umgrbi.y |  |-  Y e. V | 
						
							| 3 |  | umgrbi.n |  |-  X =/= Y | 
						
							| 4 |  | prssi |  |-  ( ( X e. V /\ Y e. V ) -> { X , Y } C_ V ) | 
						
							| 5 | 1 2 4 | mp2an |  |-  { X , Y } C_ V | 
						
							| 6 |  | prex |  |-  { X , Y } e. _V | 
						
							| 7 | 6 | elpw |  |-  ( { X , Y } e. ~P V <-> { X , Y } C_ V ) | 
						
							| 8 | 5 7 | mpbir |  |-  { X , Y } e. ~P V | 
						
							| 9 |  | hashprg |  |-  ( ( X e. V /\ Y e. V ) -> ( X =/= Y <-> ( # ` { X , Y } ) = 2 ) ) | 
						
							| 10 | 3 9 | mpbii |  |-  ( ( X e. V /\ Y e. V ) -> ( # ` { X , Y } ) = 2 ) | 
						
							| 11 | 1 2 10 | mp2an |  |-  ( # ` { X , Y } ) = 2 | 
						
							| 12 |  | fveqeq2 |  |-  ( x = { X , Y } -> ( ( # ` x ) = 2 <-> ( # ` { X , Y } ) = 2 ) ) | 
						
							| 13 | 12 | elrab |  |-  ( { X , Y } e. { x e. ~P V | ( # ` x ) = 2 } <-> ( { X , Y } e. ~P V /\ ( # ` { X , Y } ) = 2 ) ) | 
						
							| 14 | 8 11 13 | mpbir2an |  |-  { X , Y } e. { x e. ~P V | ( # ` x ) = 2 } |