| Step |
Hyp |
Ref |
Expression |
| 1 |
|
umgrbi.x |
|- X e. V |
| 2 |
|
umgrbi.y |
|- Y e. V |
| 3 |
|
umgrbi.n |
|- X =/= Y |
| 4 |
|
prssi |
|- ( ( X e. V /\ Y e. V ) -> { X , Y } C_ V ) |
| 5 |
1 2 4
|
mp2an |
|- { X , Y } C_ V |
| 6 |
|
prex |
|- { X , Y } e. _V |
| 7 |
6
|
elpw |
|- ( { X , Y } e. ~P V <-> { X , Y } C_ V ) |
| 8 |
5 7
|
mpbir |
|- { X , Y } e. ~P V |
| 9 |
|
hashprg |
|- ( ( X e. V /\ Y e. V ) -> ( X =/= Y <-> ( # ` { X , Y } ) = 2 ) ) |
| 10 |
3 9
|
mpbii |
|- ( ( X e. V /\ Y e. V ) -> ( # ` { X , Y } ) = 2 ) |
| 11 |
1 2 10
|
mp2an |
|- ( # ` { X , Y } ) = 2 |
| 12 |
|
fveqeq2 |
|- ( x = { X , Y } -> ( ( # ` x ) = 2 <-> ( # ` { X , Y } ) = 2 ) ) |
| 13 |
12
|
elrab |
|- ( { X , Y } e. { x e. ~P V | ( # ` x ) = 2 } <-> ( { X , Y } e. ~P V /\ ( # ` { X , Y } ) = 2 ) ) |
| 14 |
8 11 13
|
mpbir2an |
|- { X , Y } e. { x e. ~P V | ( # ` x ) = 2 } |