Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
2 |
1
|
clwwlkbp |
|- ( P e. ( ClWWalks ` G ) -> ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) ) |
3 |
2
|
adantl |
|- ( ( G e. UMGraph /\ P e. ( ClWWalks ` G ) ) -> ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) ) |
4 |
|
lencl |
|- ( P e. Word ( Vtx ` G ) -> ( # ` P ) e. NN0 ) |
5 |
4
|
3ad2ant2 |
|- ( ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) -> ( # ` P ) e. NN0 ) |
6 |
5
|
adantl |
|- ( ( ( G e. UMGraph /\ P e. ( ClWWalks ` G ) ) /\ ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) ) -> ( # ` P ) e. NN0 ) |
7 |
|
hasheq0 |
|- ( P e. Word ( Vtx ` G ) -> ( ( # ` P ) = 0 <-> P = (/) ) ) |
8 |
7
|
bicomd |
|- ( P e. Word ( Vtx ` G ) -> ( P = (/) <-> ( # ` P ) = 0 ) ) |
9 |
8
|
necon3bid |
|- ( P e. Word ( Vtx ` G ) -> ( P =/= (/) <-> ( # ` P ) =/= 0 ) ) |
10 |
9
|
biimpd |
|- ( P e. Word ( Vtx ` G ) -> ( P =/= (/) -> ( # ` P ) =/= 0 ) ) |
11 |
10
|
a1i |
|- ( G e. _V -> ( P e. Word ( Vtx ` G ) -> ( P =/= (/) -> ( # ` P ) =/= 0 ) ) ) |
12 |
11
|
3imp |
|- ( ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) -> ( # ` P ) =/= 0 ) |
13 |
12
|
adantl |
|- ( ( ( G e. UMGraph /\ P e. ( ClWWalks ` G ) ) /\ ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) ) -> ( # ` P ) =/= 0 ) |
14 |
|
clwwlk1loop |
|- ( ( P e. ( ClWWalks ` G ) /\ ( # ` P ) = 1 ) -> { ( P ` 0 ) , ( P ` 0 ) } e. ( Edg ` G ) ) |
15 |
14
|
expcom |
|- ( ( # ` P ) = 1 -> ( P e. ( ClWWalks ` G ) -> { ( P ` 0 ) , ( P ` 0 ) } e. ( Edg ` G ) ) ) |
16 |
|
eqid |
|- ( P ` 0 ) = ( P ` 0 ) |
17 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
18 |
17
|
umgredgne |
|- ( ( G e. UMGraph /\ { ( P ` 0 ) , ( P ` 0 ) } e. ( Edg ` G ) ) -> ( P ` 0 ) =/= ( P ` 0 ) ) |
19 |
|
eqneqall |
|- ( ( P ` 0 ) = ( P ` 0 ) -> ( ( P ` 0 ) =/= ( P ` 0 ) -> ( ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) -> ( # ` P ) =/= 1 ) ) ) |
20 |
16 18 19
|
mpsyl |
|- ( ( G e. UMGraph /\ { ( P ` 0 ) , ( P ` 0 ) } e. ( Edg ` G ) ) -> ( ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) -> ( # ` P ) =/= 1 ) ) |
21 |
20
|
expcom |
|- ( { ( P ` 0 ) , ( P ` 0 ) } e. ( Edg ` G ) -> ( G e. UMGraph -> ( ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) -> ( # ` P ) =/= 1 ) ) ) |
22 |
15 21
|
syl6 |
|- ( ( # ` P ) = 1 -> ( P e. ( ClWWalks ` G ) -> ( G e. UMGraph -> ( ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) -> ( # ` P ) =/= 1 ) ) ) ) |
23 |
22
|
com23 |
|- ( ( # ` P ) = 1 -> ( G e. UMGraph -> ( P e. ( ClWWalks ` G ) -> ( ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) -> ( # ` P ) =/= 1 ) ) ) ) |
24 |
23
|
imp4c |
|- ( ( # ` P ) = 1 -> ( ( ( G e. UMGraph /\ P e. ( ClWWalks ` G ) ) /\ ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) ) -> ( # ` P ) =/= 1 ) ) |
25 |
|
neqne |
|- ( -. ( # ` P ) = 1 -> ( # ` P ) =/= 1 ) |
26 |
25
|
a1d |
|- ( -. ( # ` P ) = 1 -> ( ( ( G e. UMGraph /\ P e. ( ClWWalks ` G ) ) /\ ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) ) -> ( # ` P ) =/= 1 ) ) |
27 |
24 26
|
pm2.61i |
|- ( ( ( G e. UMGraph /\ P e. ( ClWWalks ` G ) ) /\ ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) ) -> ( # ` P ) =/= 1 ) |
28 |
6 13 27
|
3jca |
|- ( ( ( G e. UMGraph /\ P e. ( ClWWalks ` G ) ) /\ ( G e. _V /\ P e. Word ( Vtx ` G ) /\ P =/= (/) ) ) -> ( ( # ` P ) e. NN0 /\ ( # ` P ) =/= 0 /\ ( # ` P ) =/= 1 ) ) |
29 |
3 28
|
mpdan |
|- ( ( G e. UMGraph /\ P e. ( ClWWalks ` G ) ) -> ( ( # ` P ) e. NN0 /\ ( # ` P ) =/= 0 /\ ( # ` P ) =/= 1 ) ) |
30 |
|
nn0n0n1ge2 |
|- ( ( ( # ` P ) e. NN0 /\ ( # ` P ) =/= 0 /\ ( # ` P ) =/= 1 ) -> 2 <_ ( # ` P ) ) |
31 |
29 30
|
syl |
|- ( ( G e. UMGraph /\ P e. ( ClWWalks ` G ) ) -> 2 <_ ( # ` P ) ) |
32 |
31
|
ex |
|- ( G e. UMGraph -> ( P e. ( ClWWalks ` G ) -> 2 <_ ( # ` P ) ) ) |