Metamath Proof Explorer


Theorem umgredg2

Description: An edge of a multigraph has exactly two ends. (Contributed by AV, 24-Nov-2020)

Ref Expression
Hypotheses isumgr.v
|- V = ( Vtx ` G )
isumgr.e
|- E = ( iEdg ` G )
Assertion umgredg2
|- ( ( G e. UMGraph /\ X e. dom E ) -> ( # ` ( E ` X ) ) = 2 )

Proof

Step Hyp Ref Expression
1 isumgr.v
 |-  V = ( Vtx ` G )
2 isumgr.e
 |-  E = ( iEdg ` G )
3 1 2 umgrf
 |-  ( G e. UMGraph -> E : dom E --> { x e. ~P V | ( # ` x ) = 2 } )
4 3 ffvelrnda
 |-  ( ( G e. UMGraph /\ X e. dom E ) -> ( E ` X ) e. { x e. ~P V | ( # ` x ) = 2 } )
5 fveqeq2
 |-  ( x = ( E ` X ) -> ( ( # ` x ) = 2 <-> ( # ` ( E ` X ) ) = 2 ) )
6 5 elrab
 |-  ( ( E ` X ) e. { x e. ~P V | ( # ` x ) = 2 } <-> ( ( E ` X ) e. ~P V /\ ( # ` ( E ` X ) ) = 2 ) )
7 6 simprbi
 |-  ( ( E ` X ) e. { x e. ~P V | ( # ` x ) = 2 } -> ( # ` ( E ` X ) ) = 2 )
8 4 7 syl
 |-  ( ( G e. UMGraph /\ X e. dom E ) -> ( # ` ( E ` X ) ) = 2 )