| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isumgr.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | isumgr.e |  |-  E = ( iEdg ` G ) | 
						
							| 3 | 1 2 | umgrf |  |-  ( G e. UMGraph -> E : dom E --> { x e. ~P V | ( # ` x ) = 2 } ) | 
						
							| 4 | 3 | ffvelcdmda |  |-  ( ( G e. UMGraph /\ X e. dom E ) -> ( E ` X ) e. { x e. ~P V | ( # ` x ) = 2 } ) | 
						
							| 5 |  | fveqeq2 |  |-  ( x = ( E ` X ) -> ( ( # ` x ) = 2 <-> ( # ` ( E ` X ) ) = 2 ) ) | 
						
							| 6 | 5 | elrab |  |-  ( ( E ` X ) e. { x e. ~P V | ( # ` x ) = 2 } <-> ( ( E ` X ) e. ~P V /\ ( # ` ( E ` X ) ) = 2 ) ) | 
						
							| 7 | 6 | simprbi |  |-  ( ( E ` X ) e. { x e. ~P V | ( # ` x ) = 2 } -> ( # ` ( E ` X ) ) = 2 ) | 
						
							| 8 | 4 7 | syl |  |-  ( ( G e. UMGraph /\ X e. dom E ) -> ( # ` ( E ` X ) ) = 2 ) |