Metamath Proof Explorer


Theorem umgredgne

Description: An edge of a multigraph always connects two different vertices. Analogue of umgrnloopv resp. umgrnloop . (Contributed by AV, 27-Nov-2020)

Ref Expression
Hypothesis umgredgne.v
|- E = ( Edg ` G )
Assertion umgredgne
|- ( ( G e. UMGraph /\ { M , N } e. E ) -> M =/= N )

Proof

Step Hyp Ref Expression
1 umgredgne.v
 |-  E = ( Edg ` G )
2 1 eleq2i
 |-  ( { M , N } e. E <-> { M , N } e. ( Edg ` G ) )
3 edgumgr
 |-  ( ( G e. UMGraph /\ { M , N } e. ( Edg ` G ) ) -> ( { M , N } e. ~P ( Vtx ` G ) /\ ( # ` { M , N } ) = 2 ) )
4 2 3 sylan2b
 |-  ( ( G e. UMGraph /\ { M , N } e. E ) -> ( { M , N } e. ~P ( Vtx ` G ) /\ ( # ` { M , N } ) = 2 ) )
5 eqid
 |-  { M , N } = { M , N }
6 5 hashprdifel
 |-  ( ( # ` { M , N } ) = 2 -> ( M e. { M , N } /\ N e. { M , N } /\ M =/= N ) )
7 6 simp3d
 |-  ( ( # ` { M , N } ) = 2 -> M =/= N )
8 4 7 simpl2im
 |-  ( ( G e. UMGraph /\ { M , N } e. E ) -> M =/= N )