Step |
Hyp |
Ref |
Expression |
1 |
|
umgrnloopv.e |
|- E = ( iEdg ` G ) |
2 |
|
umgredgprv.v |
|- V = ( Vtx ` G ) |
3 |
|
umgruhgr |
|- ( G e. UMGraph -> G e. UHGraph ) |
4 |
2 1
|
uhgrss |
|- ( ( G e. UHGraph /\ X e. dom E ) -> ( E ` X ) C_ V ) |
5 |
3 4
|
sylan |
|- ( ( G e. UMGraph /\ X e. dom E ) -> ( E ` X ) C_ V ) |
6 |
2 1
|
umgredg2 |
|- ( ( G e. UMGraph /\ X e. dom E ) -> ( # ` ( E ` X ) ) = 2 ) |
7 |
|
sseq1 |
|- ( ( E ` X ) = { M , N } -> ( ( E ` X ) C_ V <-> { M , N } C_ V ) ) |
8 |
|
fveqeq2 |
|- ( ( E ` X ) = { M , N } -> ( ( # ` ( E ` X ) ) = 2 <-> ( # ` { M , N } ) = 2 ) ) |
9 |
7 8
|
anbi12d |
|- ( ( E ` X ) = { M , N } -> ( ( ( E ` X ) C_ V /\ ( # ` ( E ` X ) ) = 2 ) <-> ( { M , N } C_ V /\ ( # ` { M , N } ) = 2 ) ) ) |
10 |
|
eqid |
|- { M , N } = { M , N } |
11 |
10
|
hashprdifel |
|- ( ( # ` { M , N } ) = 2 -> ( M e. { M , N } /\ N e. { M , N } /\ M =/= N ) ) |
12 |
|
prssg |
|- ( ( M e. { M , N } /\ N e. { M , N } ) -> ( ( M e. V /\ N e. V ) <-> { M , N } C_ V ) ) |
13 |
12
|
3adant3 |
|- ( ( M e. { M , N } /\ N e. { M , N } /\ M =/= N ) -> ( ( M e. V /\ N e. V ) <-> { M , N } C_ V ) ) |
14 |
13
|
biimprd |
|- ( ( M e. { M , N } /\ N e. { M , N } /\ M =/= N ) -> ( { M , N } C_ V -> ( M e. V /\ N e. V ) ) ) |
15 |
11 14
|
syl |
|- ( ( # ` { M , N } ) = 2 -> ( { M , N } C_ V -> ( M e. V /\ N e. V ) ) ) |
16 |
15
|
impcom |
|- ( ( { M , N } C_ V /\ ( # ` { M , N } ) = 2 ) -> ( M e. V /\ N e. V ) ) |
17 |
9 16
|
syl6bi |
|- ( ( E ` X ) = { M , N } -> ( ( ( E ` X ) C_ V /\ ( # ` ( E ` X ) ) = 2 ) -> ( M e. V /\ N e. V ) ) ) |
18 |
17
|
com12 |
|- ( ( ( E ` X ) C_ V /\ ( # ` ( E ` X ) ) = 2 ) -> ( ( E ` X ) = { M , N } -> ( M e. V /\ N e. V ) ) ) |
19 |
5 6 18
|
syl2anc |
|- ( ( G e. UMGraph /\ X e. dom E ) -> ( ( E ` X ) = { M , N } -> ( M e. V /\ N e. V ) ) ) |