Metamath Proof Explorer


Theorem umgredgss

Description: The set of edges of a multigraph is a subset of the set of unordered pairs of vertices. (Contributed by AV, 25-Nov-2020)

Ref Expression
Assertion umgredgss
|- ( G e. UMGraph -> ( Edg ` G ) C_ { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } )

Proof

Step Hyp Ref Expression
1 edgval
 |-  ( Edg ` G ) = ran ( iEdg ` G )
2 eqid
 |-  ( Vtx ` G ) = ( Vtx ` G )
3 eqid
 |-  ( iEdg ` G ) = ( iEdg ` G )
4 2 3 umgrf
 |-  ( G e. UMGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } )
5 4 frnd
 |-  ( G e. UMGraph -> ran ( iEdg ` G ) C_ { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } )
6 1 5 eqsstrid
 |-  ( G e. UMGraph -> ( Edg ` G ) C_ { x e. ~P ( Vtx ` G ) | ( # ` x ) = 2 } )