Metamath Proof Explorer


Theorem umgrf

Description: The edge function of an undirected multigraph is a function into unordered pairs of vertices. Version of umgrfn without explicitly specified domain of the edge function. (Contributed by AV, 24-Nov-2020)

Ref Expression
Hypotheses isumgr.v
|- V = ( Vtx ` G )
isumgr.e
|- E = ( iEdg ` G )
Assertion umgrf
|- ( G e. UMGraph -> E : dom E --> { x e. ~P V | ( # ` x ) = 2 } )

Proof

Step Hyp Ref Expression
1 isumgr.v
 |-  V = ( Vtx ` G )
2 isumgr.e
 |-  E = ( iEdg ` G )
3 1 2 isumgrs
 |-  ( G e. UMGraph -> ( G e. UMGraph <-> E : dom E --> { x e. ~P V | ( # ` x ) = 2 } ) )
4 3 ibi
 |-  ( G e. UMGraph -> E : dom E --> { x e. ~P V | ( # ` x ) = 2 } )