Metamath Proof Explorer


Theorem umgrfn

Description: The edge function of an undirected multigraph is a function into unordered pairs of vertices. (Contributed by AV, 24-Nov-2020)

Ref Expression
Hypotheses isumgr.v
|- V = ( Vtx ` G )
isumgr.e
|- E = ( iEdg ` G )
Assertion umgrfn
|- ( ( G e. UMGraph /\ E Fn A ) -> E : A --> { x e. ~P V | ( # ` x ) = 2 } )

Proof

Step Hyp Ref Expression
1 isumgr.v
 |-  V = ( Vtx ` G )
2 isumgr.e
 |-  E = ( iEdg ` G )
3 1 2 umgrf
 |-  ( G e. UMGraph -> E : dom E --> { x e. ~P V | ( # ` x ) = 2 } )
4 fndm
 |-  ( E Fn A -> dom E = A )
5 4 feq2d
 |-  ( E Fn A -> ( E : dom E --> { x e. ~P V | ( # ` x ) = 2 } <-> E : A --> { x e. ~P V | ( # ` x ) = 2 } ) )
6 3 5 syl5ibcom
 |-  ( G e. UMGraph -> ( E Fn A -> E : A --> { x e. ~P V | ( # ` x ) = 2 } ) )
7 6 imp
 |-  ( ( G e. UMGraph /\ E Fn A ) -> E : A --> { x e. ~P V | ( # ` x ) = 2 } )