Step |
Hyp |
Ref |
Expression |
1 |
|
erclwwlkn.w |
|- W = ( N ClWWalksN G ) |
2 |
|
erclwwlkn.r |
|- .~ = { <. t , u >. | ( t e. W /\ u e. W /\ E. n e. ( 0 ... N ) t = ( u cyclShift n ) ) } |
3 |
1 2
|
eclclwwlkn1 |
|- ( U e. ( W /. .~ ) -> ( U e. ( W /. .~ ) <-> E. x e. W U = { y e. W | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } ) ) |
4 |
|
rabeq |
|- ( W = ( N ClWWalksN G ) -> { y e. W | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } = { y e. ( N ClWWalksN G ) | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } ) |
5 |
1 4
|
mp1i |
|- ( ( ( G e. UMGraph /\ N e. Prime ) /\ x e. W ) -> { y e. W | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } = { y e. ( N ClWWalksN G ) | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } ) |
6 |
|
prmnn |
|- ( N e. Prime -> N e. NN ) |
7 |
6
|
nnnn0d |
|- ( N e. Prime -> N e. NN0 ) |
8 |
7
|
adantl |
|- ( ( G e. UMGraph /\ N e. Prime ) -> N e. NN0 ) |
9 |
1
|
eleq2i |
|- ( x e. W <-> x e. ( N ClWWalksN G ) ) |
10 |
9
|
biimpi |
|- ( x e. W -> x e. ( N ClWWalksN G ) ) |
11 |
|
clwwlknscsh |
|- ( ( N e. NN0 /\ x e. ( N ClWWalksN G ) ) -> { y e. ( N ClWWalksN G ) | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } ) |
12 |
8 10 11
|
syl2an |
|- ( ( ( G e. UMGraph /\ N e. Prime ) /\ x e. W ) -> { y e. ( N ClWWalksN G ) | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } ) |
13 |
5 12
|
eqtrd |
|- ( ( ( G e. UMGraph /\ N e. Prime ) /\ x e. W ) -> { y e. W | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } ) |
14 |
13
|
eqeq2d |
|- ( ( ( G e. UMGraph /\ N e. Prime ) /\ x e. W ) -> ( U = { y e. W | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } <-> U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } ) ) |
15 |
6
|
adantl |
|- ( ( G e. UMGraph /\ N e. Prime ) -> N e. NN ) |
16 |
|
simpll |
|- ( ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) /\ N e. NN ) -> x e. Word ( Vtx ` G ) ) |
17 |
|
elnnne0 |
|- ( N e. NN <-> ( N e. NN0 /\ N =/= 0 ) ) |
18 |
|
eqeq1 |
|- ( N = ( # ` x ) -> ( N = 0 <-> ( # ` x ) = 0 ) ) |
19 |
18
|
eqcoms |
|- ( ( # ` x ) = N -> ( N = 0 <-> ( # ` x ) = 0 ) ) |
20 |
|
hasheq0 |
|- ( x e. Word ( Vtx ` G ) -> ( ( # ` x ) = 0 <-> x = (/) ) ) |
21 |
19 20
|
sylan9bbr |
|- ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) -> ( N = 0 <-> x = (/) ) ) |
22 |
21
|
necon3bid |
|- ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) -> ( N =/= 0 <-> x =/= (/) ) ) |
23 |
22
|
biimpcd |
|- ( N =/= 0 -> ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) -> x =/= (/) ) ) |
24 |
17 23
|
simplbiim |
|- ( N e. NN -> ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) -> x =/= (/) ) ) |
25 |
24
|
impcom |
|- ( ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) /\ N e. NN ) -> x =/= (/) ) |
26 |
|
simplr |
|- ( ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) /\ N e. NN ) -> ( # ` x ) = N ) |
27 |
26
|
eqcomd |
|- ( ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) /\ N e. NN ) -> N = ( # ` x ) ) |
28 |
16 25 27
|
3jca |
|- ( ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) /\ N e. NN ) -> ( x e. Word ( Vtx ` G ) /\ x =/= (/) /\ N = ( # ` x ) ) ) |
29 |
28
|
ex |
|- ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) -> ( N e. NN -> ( x e. Word ( Vtx ` G ) /\ x =/= (/) /\ N = ( # ` x ) ) ) ) |
30 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
31 |
30
|
clwwlknbp |
|- ( x e. ( N ClWWalksN G ) -> ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) ) |
32 |
29 31
|
syl11 |
|- ( N e. NN -> ( x e. ( N ClWWalksN G ) -> ( x e. Word ( Vtx ` G ) /\ x =/= (/) /\ N = ( # ` x ) ) ) ) |
33 |
9 32
|
syl5bi |
|- ( N e. NN -> ( x e. W -> ( x e. Word ( Vtx ` G ) /\ x =/= (/) /\ N = ( # ` x ) ) ) ) |
34 |
15 33
|
syl |
|- ( ( G e. UMGraph /\ N e. Prime ) -> ( x e. W -> ( x e. Word ( Vtx ` G ) /\ x =/= (/) /\ N = ( # ` x ) ) ) ) |
35 |
34
|
imp |
|- ( ( ( G e. UMGraph /\ N e. Prime ) /\ x e. W ) -> ( x e. Word ( Vtx ` G ) /\ x =/= (/) /\ N = ( # ` x ) ) ) |
36 |
|
scshwfzeqfzo |
|- ( ( x e. Word ( Vtx ` G ) /\ x =/= (/) /\ N = ( # ` x ) ) -> { y e. Word ( Vtx ` G ) | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ N ) y = ( x cyclShift n ) } ) |
37 |
35 36
|
syl |
|- ( ( ( G e. UMGraph /\ N e. Prime ) /\ x e. W ) -> { y e. Word ( Vtx ` G ) | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ N ) y = ( x cyclShift n ) } ) |
38 |
37
|
eqeq2d |
|- ( ( ( G e. UMGraph /\ N e. Prime ) /\ x e. W ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } <-> U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ N ) y = ( x cyclShift n ) } ) ) |
39 |
|
fveq2 |
|- ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) } -> ( # ` U ) = ( # ` { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) } ) ) |
40 |
|
simprl |
|- ( ( ( x e. Word ( Vtx ` G ) /\ x e. ( ( # ` x ) ClWWalksN G ) ) /\ ( G e. UMGraph /\ ( # ` x ) e. Prime ) ) -> G e. UMGraph ) |
41 |
|
prmuz2 |
|- ( ( # ` x ) e. Prime -> ( # ` x ) e. ( ZZ>= ` 2 ) ) |
42 |
41
|
adantl |
|- ( ( G e. UMGraph /\ ( # ` x ) e. Prime ) -> ( # ` x ) e. ( ZZ>= ` 2 ) ) |
43 |
42
|
adantl |
|- ( ( ( x e. Word ( Vtx ` G ) /\ x e. ( ( # ` x ) ClWWalksN G ) ) /\ ( G e. UMGraph /\ ( # ` x ) e. Prime ) ) -> ( # ` x ) e. ( ZZ>= ` 2 ) ) |
44 |
|
simplr |
|- ( ( ( x e. Word ( Vtx ` G ) /\ x e. ( ( # ` x ) ClWWalksN G ) ) /\ ( G e. UMGraph /\ ( # ` x ) e. Prime ) ) -> x e. ( ( # ` x ) ClWWalksN G ) ) |
45 |
|
umgr2cwwkdifex |
|- ( ( G e. UMGraph /\ ( # ` x ) e. ( ZZ>= ` 2 ) /\ x e. ( ( # ` x ) ClWWalksN G ) ) -> E. i e. ( 0 ..^ ( # ` x ) ) ( x ` i ) =/= ( x ` 0 ) ) |
46 |
40 43 44 45
|
syl3anc |
|- ( ( ( x e. Word ( Vtx ` G ) /\ x e. ( ( # ` x ) ClWWalksN G ) ) /\ ( G e. UMGraph /\ ( # ` x ) e. Prime ) ) -> E. i e. ( 0 ..^ ( # ` x ) ) ( x ` i ) =/= ( x ` 0 ) ) |
47 |
|
oveq2 |
|- ( n = m -> ( x cyclShift n ) = ( x cyclShift m ) ) |
48 |
47
|
eqeq2d |
|- ( n = m -> ( y = ( x cyclShift n ) <-> y = ( x cyclShift m ) ) ) |
49 |
48
|
cbvrexvw |
|- ( E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) <-> E. m e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift m ) ) |
50 |
|
eqeq1 |
|- ( y = u -> ( y = ( x cyclShift m ) <-> u = ( x cyclShift m ) ) ) |
51 |
|
eqcom |
|- ( u = ( x cyclShift m ) <-> ( x cyclShift m ) = u ) |
52 |
50 51
|
bitrdi |
|- ( y = u -> ( y = ( x cyclShift m ) <-> ( x cyclShift m ) = u ) ) |
53 |
52
|
rexbidv |
|- ( y = u -> ( E. m e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift m ) <-> E. m e. ( 0 ..^ ( # ` x ) ) ( x cyclShift m ) = u ) ) |
54 |
49 53
|
syl5bb |
|- ( y = u -> ( E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) <-> E. m e. ( 0 ..^ ( # ` x ) ) ( x cyclShift m ) = u ) ) |
55 |
54
|
cbvrabv |
|- { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) } = { u e. Word ( Vtx ` G ) | E. m e. ( 0 ..^ ( # ` x ) ) ( x cyclShift m ) = u } |
56 |
55
|
cshwshashnsame |
|- ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) e. Prime ) -> ( E. i e. ( 0 ..^ ( # ` x ) ) ( x ` i ) =/= ( x ` 0 ) -> ( # ` { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) } ) = ( # ` x ) ) ) |
57 |
56
|
ad2ant2rl |
|- ( ( ( x e. Word ( Vtx ` G ) /\ x e. ( ( # ` x ) ClWWalksN G ) ) /\ ( G e. UMGraph /\ ( # ` x ) e. Prime ) ) -> ( E. i e. ( 0 ..^ ( # ` x ) ) ( x ` i ) =/= ( x ` 0 ) -> ( # ` { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) } ) = ( # ` x ) ) ) |
58 |
46 57
|
mpd |
|- ( ( ( x e. Word ( Vtx ` G ) /\ x e. ( ( # ` x ) ClWWalksN G ) ) /\ ( G e. UMGraph /\ ( # ` x ) e. Prime ) ) -> ( # ` { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) } ) = ( # ` x ) ) |
59 |
39 58
|
sylan9eqr |
|- ( ( ( ( x e. Word ( Vtx ` G ) /\ x e. ( ( # ` x ) ClWWalksN G ) ) /\ ( G e. UMGraph /\ ( # ` x ) e. Prime ) ) /\ U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) } ) -> ( # ` U ) = ( # ` x ) ) |
60 |
59
|
exp41 |
|- ( x e. Word ( Vtx ` G ) -> ( x e. ( ( # ` x ) ClWWalksN G ) -> ( ( G e. UMGraph /\ ( # ` x ) e. Prime ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) } -> ( # ` U ) = ( # ` x ) ) ) ) ) |
61 |
60
|
adantr |
|- ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) -> ( x e. ( ( # ` x ) ClWWalksN G ) -> ( ( G e. UMGraph /\ ( # ` x ) e. Prime ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) } -> ( # ` U ) = ( # ` x ) ) ) ) ) |
62 |
|
oveq1 |
|- ( N = ( # ` x ) -> ( N ClWWalksN G ) = ( ( # ` x ) ClWWalksN G ) ) |
63 |
62
|
eleq2d |
|- ( N = ( # ` x ) -> ( x e. ( N ClWWalksN G ) <-> x e. ( ( # ` x ) ClWWalksN G ) ) ) |
64 |
|
eleq1 |
|- ( N = ( # ` x ) -> ( N e. Prime <-> ( # ` x ) e. Prime ) ) |
65 |
64
|
anbi2d |
|- ( N = ( # ` x ) -> ( ( G e. UMGraph /\ N e. Prime ) <-> ( G e. UMGraph /\ ( # ` x ) e. Prime ) ) ) |
66 |
|
oveq2 |
|- ( N = ( # ` x ) -> ( 0 ..^ N ) = ( 0 ..^ ( # ` x ) ) ) |
67 |
66
|
rexeqdv |
|- ( N = ( # ` x ) -> ( E. n e. ( 0 ..^ N ) y = ( x cyclShift n ) <-> E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) ) ) |
68 |
67
|
rabbidv |
|- ( N = ( # ` x ) -> { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ N ) y = ( x cyclShift n ) } = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) } ) |
69 |
68
|
eqeq2d |
|- ( N = ( # ` x ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ N ) y = ( x cyclShift n ) } <-> U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) } ) ) |
70 |
|
eqeq2 |
|- ( N = ( # ` x ) -> ( ( # ` U ) = N <-> ( # ` U ) = ( # ` x ) ) ) |
71 |
69 70
|
imbi12d |
|- ( N = ( # ` x ) -> ( ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ N ) y = ( x cyclShift n ) } -> ( # ` U ) = N ) <-> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) } -> ( # ` U ) = ( # ` x ) ) ) ) |
72 |
65 71
|
imbi12d |
|- ( N = ( # ` x ) -> ( ( ( G e. UMGraph /\ N e. Prime ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ N ) y = ( x cyclShift n ) } -> ( # ` U ) = N ) ) <-> ( ( G e. UMGraph /\ ( # ` x ) e. Prime ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) } -> ( # ` U ) = ( # ` x ) ) ) ) ) |
73 |
63 72
|
imbi12d |
|- ( N = ( # ` x ) -> ( ( x e. ( N ClWWalksN G ) -> ( ( G e. UMGraph /\ N e. Prime ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ N ) y = ( x cyclShift n ) } -> ( # ` U ) = N ) ) ) <-> ( x e. ( ( # ` x ) ClWWalksN G ) -> ( ( G e. UMGraph /\ ( # ` x ) e. Prime ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) } -> ( # ` U ) = ( # ` x ) ) ) ) ) ) |
74 |
73
|
eqcoms |
|- ( ( # ` x ) = N -> ( ( x e. ( N ClWWalksN G ) -> ( ( G e. UMGraph /\ N e. Prime ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ N ) y = ( x cyclShift n ) } -> ( # ` U ) = N ) ) ) <-> ( x e. ( ( # ` x ) ClWWalksN G ) -> ( ( G e. UMGraph /\ ( # ` x ) e. Prime ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) } -> ( # ` U ) = ( # ` x ) ) ) ) ) ) |
75 |
74
|
adantl |
|- ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) -> ( ( x e. ( N ClWWalksN G ) -> ( ( G e. UMGraph /\ N e. Prime ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ N ) y = ( x cyclShift n ) } -> ( # ` U ) = N ) ) ) <-> ( x e. ( ( # ` x ) ClWWalksN G ) -> ( ( G e. UMGraph /\ ( # ` x ) e. Prime ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ ( # ` x ) ) y = ( x cyclShift n ) } -> ( # ` U ) = ( # ` x ) ) ) ) ) ) |
76 |
61 75
|
mpbird |
|- ( ( x e. Word ( Vtx ` G ) /\ ( # ` x ) = N ) -> ( x e. ( N ClWWalksN G ) -> ( ( G e. UMGraph /\ N e. Prime ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ N ) y = ( x cyclShift n ) } -> ( # ` U ) = N ) ) ) ) |
77 |
31 76
|
mpcom |
|- ( x e. ( N ClWWalksN G ) -> ( ( G e. UMGraph /\ N e. Prime ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ N ) y = ( x cyclShift n ) } -> ( # ` U ) = N ) ) ) |
78 |
77 1
|
eleq2s |
|- ( x e. W -> ( ( G e. UMGraph /\ N e. Prime ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ N ) y = ( x cyclShift n ) } -> ( # ` U ) = N ) ) ) |
79 |
78
|
impcom |
|- ( ( ( G e. UMGraph /\ N e. Prime ) /\ x e. W ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ..^ N ) y = ( x cyclShift n ) } -> ( # ` U ) = N ) ) |
80 |
38 79
|
sylbid |
|- ( ( ( G e. UMGraph /\ N e. Prime ) /\ x e. W ) -> ( U = { y e. Word ( Vtx ` G ) | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } -> ( # ` U ) = N ) ) |
81 |
14 80
|
sylbid |
|- ( ( ( G e. UMGraph /\ N e. Prime ) /\ x e. W ) -> ( U = { y e. W | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } -> ( # ` U ) = N ) ) |
82 |
81
|
rexlimdva |
|- ( ( G e. UMGraph /\ N e. Prime ) -> ( E. x e. W U = { y e. W | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } -> ( # ` U ) = N ) ) |
83 |
82
|
com12 |
|- ( E. x e. W U = { y e. W | E. n e. ( 0 ... N ) y = ( x cyclShift n ) } -> ( ( G e. UMGraph /\ N e. Prime ) -> ( # ` U ) = N ) ) |
84 |
3 83
|
syl6bi |
|- ( U e. ( W /. .~ ) -> ( U e. ( W /. .~ ) -> ( ( G e. UMGraph /\ N e. Prime ) -> ( # ` U ) = N ) ) ) |
85 |
84
|
pm2.43i |
|- ( U e. ( W /. .~ ) -> ( ( G e. UMGraph /\ N e. Prime ) -> ( # ` U ) = N ) ) |
86 |
85
|
com12 |
|- ( ( G e. UMGraph /\ N e. Prime ) -> ( U e. ( W /. .~ ) -> ( # ` U ) = N ) ) |