Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
2 |
|
eqid |
|- ( iEdg ` G ) = ( iEdg ` G ) |
3 |
1 2
|
umgrislfupgr |
|- ( G e. UMGraph <-> ( G e. UPGraph /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } ) ) |
4 |
1 2
|
lfgrn1cycl |
|- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> { x e. ~P ( Vtx ` G ) | 2 <_ ( # ` x ) } -> ( F ( Cycles ` G ) P -> ( # ` F ) =/= 1 ) ) |
5 |
3 4
|
simplbiim |
|- ( G e. UMGraph -> ( F ( Cycles ` G ) P -> ( # ` F ) =/= 1 ) ) |
6 |
5
|
imp |
|- ( ( G e. UMGraph /\ F ( Cycles ` G ) P ) -> ( # ` F ) =/= 1 ) |